cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230723 Number of non-equivalent ways to choose three points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 1, 6, 25, 87, 238, 575, 1228, 2425, 4446, 7734, 12806, 20422, 31444, 47072, 68639, 97929, 136893, 188061, 254170, 338679, 445297, 578616, 743524, 945968, 1192243, 1489894, 1846869, 2272575, 2776880, 3371335, 4068016, 4880921, 5824640, 6915942, 8172258, 9613470
Offset: 1

Views

Author

Heinrich Ludwig, Oct 28 2013

Keywords

Examples

			for n = 3 there are the following a(3) = 6 choices of 3 points (=X) (rotations and reflections ignored):
    X         .         .         X         .         X
   . .       X X       . .       X X       . X       X .
  X . X     . X .     X X X     . . .     X . X     . X .
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,1,6,25,87,238,575,1228,2425,4446,7734,12806},40] (* Harvey P. Dale, Oct 24 2020 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 + B + C)/288
where
B = 27*n^2 + 3*n - 9 if n odd
B = 48*n otherwise
and
C = -32 if n == 1 (mod 3)
C = 0 otherwise
G.f.: x^2*(1 + 3*x + 7*x^2 + 19*x^3 + 16*x^4 + 12*x^5 + x^6 + 2*x^7 - x^8)/((1-x^3) * (1-x^2)^3 * (1-x)^3). - Ralf Stephan, Nov 03 2013