A230758 Integer areas of the first Neuberg triangles of integer-sided triangles.
1275, 4614, 5100, 7275, 11475, 18456, 20400, 29100, 31875, 41526, 45900, 60409, 62475, 65475, 73824, 81600, 103275, 103935, 115350, 116400, 127500, 154275, 166104, 173229, 181875, 183600, 215475, 226086, 241636, 249900, 261900, 265974, 286875, 295296, 434209
Offset: 1
Keywords
Examples
4614 is in the sequence because the area A' = (a^2*b^2 + a^2*c^2 + b^2*c^2)/(4*sqrt((-a+b+c)*(a-b+c)*(a+b-c)*(a+b+c))) of the first Neuberg triangle corresponding to the initial triangle (72,96,120) is A' = (72^2*96^2 + 72^2*120^2 + 96^2*120^2)/(4*sqrt((-72+96+120)*(72-96+120)*(72+96-120)*(72+96+120))) = 4614.
Links
- Wolfram MathWorld, First Neuberg Triangles
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn = 1000; lst = {}; Do[d=(-a+b+c)(a-b+c)(a+b-c)(a+b+c); If[d>0 && IntegerQ[(a^2*b^2+a^2*c^2+b^2*c^2)/(4*Sqrt[d])], AppendTo[lst, (a^2*b^2+a^2*c^2+b^2*c^2)/(4*Sqrt[d])]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments