A230762 List of commonest number of decompositions of 2k into an unordered sum of two odd primes in range 3 <= k <= m, integer m >= 3, where m is explained below.
1, 2, 3, 4, 5, 7, 8, 9, 11, 18, 27, 44, 48, 52, 58, 61, 75, 77, 98, 141, 165, 200, 231, 337, 360, 378, 384, 466, 517, 697, 880, 1061, 1400, 1503, 1615, 1700, 1896, 2082, 2163, 3242, 3929, 4232, 5373
Offset: 1
Examples
When m=3, k has only one value 3, 2k=6=3+3. Only one possible decomposition, making a decomposition statistics {{x,y}}={{1,1}}. So a(1)=1; When m=4, k gets another value 4, 2k=8=3+5. The decomposition statistics {{x,y}}={{1,2}};... Thereafter, k=5 makes 2k=10=5+5=3+7, {{x,y}}={{1,2},{2,1}}, the commonest value is still 1. k=6, 2k=12=5+7, {{x,y}}={{1,3},{2,1}}, commonest x is still 1. k=7, 2k=14=3+11=7+7, {{x,y}}={{1,3},{2,2}}, commonest x is still 1. k=8, 2k=16=3+13=5+11, {{x,y}}={{1,3},{2,3}}, except for 1, 2 is now eligible to be the new possible commonest x, so a(2)=2. ... Counting up to k=28, the decomposition statistics is {{1,3},{2,8},{3,8},{4,5},{5,2}}, 2 and 3 are now the commonest decompositions. It is the first time for 3 to appear. So a(3)=3.
Links
- Lei Zhou, Table of n, a(n) for n = 1..45
Crossrefs
Cf. A002375.
Programs
-
Mathematica
check=0;posts={};mpos=0;res={};sres=0;s={};size=0;k=2; While[k++;k2=2*k;p2=k-1;ct=0; While[p2=NextPrime[p2];p2
size, Do[AppendTo[s,0],{i,size+1,ct}]; size=ct]; (*and construct statistics in array s*) s[[ct]]++;m=Max[s];aa=Position[s,m];la=Length[aa]; Do[a=aa[[pos,1]]; If[a>sres, While[sres
Extensions
Lei Zhou, Nov 08 2013, uploaded a b-file extending the known elements of this sequence to the 45th.
Comments