cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230762 List of commonest number of decompositions of 2k into an unordered sum of two odd primes in range 3 <= k <= m, integer m >= 3, where m is explained below.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 18, 27, 44, 48, 52, 58, 61, 75, 77, 98, 141, 165, 200, 231, 337, 360, 378, 384, 466, 517, 697, 880, 1061, 1400, 1503, 1615, 1700, 1896, 2082, 2163, 3242, 3929, 4232, 5373
Offset: 1

Views

Author

Lei Zhou, Oct 29 2013

Keywords

Comments

If making a statistical bar chart with x-axis denoting the number of decompositions of an even number, and y-axis denoting the number of hits of an x-axis value for all 3 <= k <= m, there are one or more commonest x value presenting with highest y value. Such commonest x values increase when m increases, and fall on the x values listed in this sequence.
Hypothesis: With the increase of m, the commonest number of decompositions of 2n into an unordered sum of two odd primes in the range of 3 <= k <= m ascends.
This hypothesis derives that the corresponding smallest m to the terms of this sequence makes an ascending sequence. Or say, when testing with m ascending, once a number a(n) enters this sequence, no number smaller than a(n) will be able to enter this sequence if they had not enter previous.

Examples

			When m=3, k has only one value 3, 2k=6=3+3.  Only one possible decomposition, making a decomposition statistics {{x,y}}={{1,1}}.  So a(1)=1;
When m=4, k gets another value 4, 2k=8=3+5. The decomposition statistics {{x,y}}={{1,2}};...
Thereafter, k=5 makes 2k=10=5+5=3+7, {{x,y}}={{1,2},{2,1}}, the commonest value is still 1.
k=6, 2k=12=5+7, {{x,y}}={{1,3},{2,1}}, commonest x is still 1.
k=7, 2k=14=3+11=7+7, {{x,y}}={{1,3},{2,2}}, commonest x is still 1.
k=8, 2k=16=3+13=5+11, {{x,y}}={{1,3},{2,3}}, except for 1, 2 is now eligible to be the new possible commonest x, so a(2)=2.
...
Counting up to k=28, the decomposition statistics is {{1,3},{2,8},{3,8},{4,5},{5,2}}, 2 and 3 are now the commonest decompositions. It is the first time for 3 to appear.  So a(3)=3.
		

Crossrefs

Cf. A002375.

Programs

  • Mathematica
    check=0;posts={};mpos=0;res={};sres=0;s={};size=0;k=2;
    While[k++;k2=2*k;p2=k-1;ct=0;
      While[p2=NextPrime[p2];p2size, Do[AppendTo[s,0],{i,size+1,ct}]; size=ct];
      (*and construct statistics in array s*)
      s[[ct]]++;m=Max[s];aa=Position[s,m];la=Length[aa];
      Do[a=aa[[pos,1]];
        If[a>sres,
          While[sres
    				

Extensions

Lei Zhou, Nov 08 2013, uploaded a b-file extending the known elements of this sequence to the 45th.