A230770 Numbers n such that sigma(n) + phi(n) is a composite number of the form p^k where p is a prime.
2, 4, 12, 15, 110, 121, 125, 511, 908, 2047, 31269, 58252, 180544, 2275680, 3776877, 4164717, 4835820, 8386433, 8388607, 32284479, 60333777, 82628532, 122016110, 174438012, 238609292, 513528686, 515718093, 919749786, 1043394771, 3851465145, 4264386607
Offset: 1
Examples
sigma(12)+phi(12)=sigma(15)+phi(15)=2^5, sigma(180544)+phi(180544)=2^19.
Programs
-
Mathematica
h[n_]:=DivisorSigma[1,n]+EulerPhi[n];Do[a=h[n];If[Length[FactorInteger[a]] == 1 && !PrimeQ[a], Print[n]],{n, 123456789}]
-
PARI
is(n)=isprimepower(sigma(n)+eulerphi(n))>1 \\ Charles R Greathouse IV, Sep 04 2014
Extensions
a(24)-a(31) from Donovan Johnson, Feb 19 2014
Comments