cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230850 A054541 and A000012 interleaved.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 4, 1, 6, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 6, 1, 4, 1, 6, 1, 8, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 14, 1, 4, 1, 6, 1, 2, 1, 10, 1, 2, 1, 6, 1, 6, 1, 4, 1, 6, 1, 6, 1, 2, 1, 10, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 31 2013

Keywords

Comments

a(n) is also the length of the n-th edge of a staircase which represents the function pi(x) on the first quadrant of the square grid, see A000720.
a(2n-1) is the length of the n-th horizontal edge in the staircase.
a(2n) is the length of the n-th vertical edge in the staircase.
For another version see A230849.

Examples

			Illustration of initial terms, n = 1..22:
.
1                                                              _ _|
1                                                  _ _ _ _ _ _|
1                                          _ _ _ _|
1                                      _ _|
1                              _ _ _ _|
1                          _ _|
1                  _ _ _ _|
1              _ _|
1          _ _|
1        _|
1    _ _|
.
.      2 1   2   2       4   2       4   2       4           6   2
.
Drawing vertical line segments below the staircase (as shown below) we have that the number of cells in the vertical bars gives 0 together A000720.
Drawing horizontal line segments above the staircase we have that the number of cells in the k-th horizontal bar is A000040(k).
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
31  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
29  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
23  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
19  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
17  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
13  |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
11  |_ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
7   |_ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
5   |_ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
3   |_ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
2   |_ _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
.    0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
		

Crossrefs

Programs

  • Mathematica
    Riffle[Join[{2},Differences[Prime[Range[100]]]],1] (* Paolo Xausa, Oct 31 2023 *)
  • PARI
    A230850(n) = if(1==n,2,if((n%2),prime((n+1)/2)-prime(((n+1)/2)-1),1)); \\ Antti Karttunen, Dec 23 2018

Formula

a(1) = 2; for n > 1, a(n) = A230849(n). - Antti Karttunen, Dec 23 2018