cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230863 a(1)=0; thereafter a(n) = 2^(a(ceiling(n/2)) + a(floor(n/2))).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 64, 256, 4096, 65536, 16777216, 4294967296, 1208925819614629174706176, 340282366920938463463374607431768211456, 2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 02 2013; revised Mar 26 2014

Keywords

Comments

a(16) = 2^512
= 134078079299425970995740249982058461274793658205923933777235\
614437217640300735469768018742981669034276900318581864860508537538828119465\
69946433649006084096.

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember;
    if n=1 then 0 else 2^(f(ceil(n/2))+f(floor(n/2))); fi; end;
    [seq(f(n),n=1..16)];

Formula

In general, for n >= 11, define i by 9*2^(i-1) < n <= 9*2^i. Then it appears that a(n) = 2^2^2^...^2^x, a tower of height i+5, containing i+4 2's, where x is in the range 0 < x <= 1.
For example, if n=18, i=1, and a(18) = 2^8192 = 2^2^2^2^2^0.91662699..., of height 6.
Note also that i+5 = A230864(a(n)).

A230875 a(1)=0; thereafter a(n) = 2^a(ceiling(n/2)).

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 4, 16, 16, 16, 16, 16, 16, 16, 16, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2013

Keywords

Comments

a(33) through a(64) are 2^65536.

Crossrefs

Formula

For n>2, a(n) = a tower of 2's of height ceiling(log_2(n))-1. E.g. a(17) = 2^2^2^2.
Showing 1-2 of 2 results.