cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230863 a(1)=0; thereafter a(n) = 2^(a(ceiling(n/2)) + a(floor(n/2))).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 64, 256, 4096, 65536, 16777216, 4294967296, 1208925819614629174706176, 340282366920938463463374607431768211456, 2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 02 2013; revised Mar 26 2014

Keywords

Comments

a(16) = 2^512
= 134078079299425970995740249982058461274793658205923933777235\
614437217640300735469768018742981669034276900318581864860508537538828119465\
69946433649006084096.

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember;
    if n=1 then 0 else 2^(f(ceil(n/2))+f(floor(n/2))); fi; end;
    [seq(f(n),n=1..16)];

Formula

In general, for n >= 11, define i by 9*2^(i-1) < n <= 9*2^i. Then it appears that a(n) = 2^2^2^...^2^x, a tower of height i+5, containing i+4 2's, where x is in the range 0 < x <= 1.
For example, if n=18, i=1, and a(18) = 2^8192 = 2^2^2^2^2^0.91662699..., of height 6.
Note also that i+5 = A230864(a(n)).

A230874 a(1)=1; thereafter a(n) = 2^a(ceiling(n/2)).

Original entry on oeis.org

1, 2, 4, 4, 16, 16, 16, 16, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2013

Keywords

Comments

a(17) through a(32) are 2^65536,
a(33) through a(64) are 2^2^65536, etc.

Crossrefs

Formula

For n>1, a(n) = a tower of 2's of height ceiling(log_2(n)). E.g. a(15) = 2^2^2^2.
Showing 1-2 of 2 results.