cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230879 Number of 2-packed n X n matrices.

Original entry on oeis.org

1, 2, 56, 16064, 39156608, 813732073472, 147662286695991296, 237776857718965784182784, 3425329990022686416530808209408, 443021337239562368918979788606843912192, 515203019085226443540506018909263027730003787776
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2013

Keywords

Comments

A k-packed matrix of size n X n is a matrix with entries in the alphabet A_k = {0,1, ..., k} such that each row and each column contains at least one nonzero entry.

Crossrefs

Row sums of A230878.

Programs

  • Mathematica
    p[k_, n_] := Sum[(-1)^(i + j)*Binomial[n, i]*Binomial[n, j]*(k + 1)^(i*j), {i, 0, n}, {j, 0, n}];
    a[n_] := p[2, n];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
  • PARI
    \\ here p(k,n) is number of k-packed matrices of size n.
    p(k,n)={sum(i=0, n, sum(j=0, n, (-1)^(i+j) * binomial(n,i) * binomial(n,j) * (k+1)^(i*j)))}
    a(n) = p(2,n); \\ Andrew Howroyd, Sep 20 2017

Formula

Cheballah et al. give an explicit formula.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * binomial(n,i) * binomial(n,j) * 3^(i*j). - Andrew Howroyd, Sep 20 2017

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 20 2017