A230880 Number of 2-packed matrices with exactly n nonzero entries.
1, 2, 8, 80, 1120, 20544, 463744, 12422656, 384947200, 13541822464, 533049493504, 23210958688256, 1107652218822656, 57482801016422400, 3223015475535380480, 194157345516262588416, 12505948470244176953344, 857670052436844788318208, 62395270194815987194789888
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- H. Cheballah, S. Giraudo, R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
Programs
-
Mathematica
b[n_] := Sum[StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}]/n!; a[n_] := 2^n*b[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
-
PARI
\\ here b(n) is A104602. b(n) = {sum(m=0, n, sum(k=0, n, stirling(n,k,1) * m!^2 * stirling(k,m,2)^2)) / n!} a(n) = 2^n * b(n); \\ Andrew Howroyd, Sep 20 2017
Formula
Cheballah et al. give an explicit formula.
From Andrew Howroyd, Sep 20 2017: (Start)
a(n) = Sum_{r=1..n} Sum_{i=0..r} Sum_{j=0..r} (-1)^(i+j) * binomial(r,i) * binomial(r,j) * binomial(i*j,n) * 2^n.
a(n) = 2^n * A104602(n).
(End)
Extensions
Terms a(9) and beyond from Andrew Howroyd, Sep 20 2017
Comments