cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230902 Positive numbers such that half of the set of divisors are of the form x^2 + x*y + y^2 (A003136) and half not (A034020).

Original entry on oeis.org

2, 5, 6, 8, 11, 14, 15, 17, 18, 23, 24, 26, 29, 32, 33, 35, 38, 41, 42, 45, 47, 51, 53, 54, 56, 59, 62, 65, 69, 71, 72, 74, 77, 78, 83, 86, 87, 89, 95, 96, 98, 99, 101, 104, 105, 107, 113, 114, 119, 122, 123, 125, 126, 128, 131, 134, 135, 137, 141, 143, 146, 149, 152, 153, 155, 158, 159, 161, 162
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 31 2013

Keywords

Examples

			Triangle read by rows in which row n lists the divisors of n begins:
1(0^2+0*1+1^2);
1(0^2+0*1+1^2), 2;
1(0^2+0*1+1^2), 3(1^1+1*1+1^2);
1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2);
1(0^2+0*1+1^2), 5;
1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 6;
1(0^2+0*1+1^2), 7(1^1+1*2+2^2);
1(0^2+0*1+1^2), 2, 4(0^2+0*2+2^2), 8;
1(0^2+0*1+1^2), 3(1^1+1*1+1^2), 9;
1(0^2+0*1+1^2), 2, 5, 10;
1(0^2+0*1+1^2), 11;
1(0^2+0*1+1^2), 2, 3(1^1+1*1+1^2), 4(0^2+0*2+2^2), 6, 12(2^2+2*2+2^2);
1(0^2+0*1+1^2), 13(1^2+1*3+3^2);
1(0^2+0*1+1^2), 2, 7(1^1+1*2+2^2), 14;
1(0^2+0*1+1^1), 3(1^11+1*1+1^2), 5, 15,
i.e. a(1)=2, a(2)=5, a(3)=6, a(4)=8, a(5)=11, a(6)=14, a(7)=15.
		

Crossrefs

Cf. A027750, A230851. Subsequence of A000037.

Programs

  • Maple
    isA003136 := proc(n)
        local x,y ;
        for x from 0 do
            if x^2 > n then
                return false;
            end if;
            for y from 0 do
                if x^2+x*y+y^2 = n then
                    return true;
                elif x^2+x*y+y^2 > n then
                    break;
                end if;
            end do:
        end do:
    end proc:
    isA230902 := proc(n)
        local a36,a20,d ;
        a36 := 0 ;
        a20 := 0 ;
        for d in numtheory[divisors](n) do
            if isA003136(d) then
                a36 := a36+1 ;
            else
                a20 := a20+1 ;
            end if;
        end do:
        simplify( a36=a20) ;
    end proc:
    for n from 0 to 200 do
        if isA230902(n) then
        printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Nov 08 2013
  • Mathematica
    A003136Q[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x*y + y^2, {x, y}, Integers]]];
    okQ[n_] := With[{dd = Divisors[n]}, 2 Count[dd, _?A003136Q] == Length[dd]];
    Select[Range[200], okQ] (* Jean-François Alcover, Jun 07 2024 *)

Extensions

Corrected by R. J. Mathar, Nov 08 2013