A230961 Boustrophedon transform of factorials beginning with 1, cf. A000142.
1, 3, 11, 50, 273, 1746, 12823, 106462, 986689, 10103074, 113309991, 1381835454, 18209834849, 257911743506, 3907538236631, 63066584719982, 1080340925760129, 19577690297352258, 374214932301757255, 7524626434657416286, 158783753482817132065
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon_transform
- Index entries for sequences related to boustrophedon transform
Crossrefs
Cf. A230960.
Programs
-
Haskell
a230961 n = sum $ zipWith (*) (a109449_row n) $ tail a000142_list
-
Mathematica
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; a[n_] := Sum[T[n, k] (k + 1)!, {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 23 2019 *)
-
Python
from itertools import accumulate, count, islice def A230961_gen(): # generator of terms blist, m = tuple(), 1 for i in count(1): yield (blist := tuple(accumulate(reversed(blist),initial=(m := m*i))))[-1] A230961_list = list(islice(A230961_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: conjecture: (tan(x)+sec(x))/(1-2*x+x^2) = (1- 12*x/ (Q(0)+6*x+3*x^2))/(1-x)^2, where Q(k) = 2*(4*k+1)*(32*k^2+16*k - x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ n! * n * (1+sin(1))/cos(1). - Vaclav Kotesovec, Jun 12 2015