cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230961 Boustrophedon transform of factorials beginning with 1, cf. A000142.

Original entry on oeis.org

1, 3, 11, 50, 273, 1746, 12823, 106462, 986689, 10103074, 113309991, 1381835454, 18209834849, 257911743506, 3907538236631, 63066584719982, 1080340925760129, 19577690297352258, 374214932301757255, 7524626434657416286, 158783753482817132065
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2013

Keywords

Crossrefs

Cf. A230960.

Programs

  • Haskell
    a230961 n = sum $ zipWith (*) (a109449_row n) $ tail a000142_list
    
  • Mathematica
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
    a[n_] := Sum[T[n, k] (k + 1)!, {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 23 2019 *)
  • Python
    from itertools import accumulate, count, islice
    def A230961_gen(): # generator of terms
        blist, m = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := m*i))))[-1]
    A230961_list = list(islice(A230961_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = sum(A109449(n,k)*A000142(k+1): k=0..n).
E.g.f.: conjecture: (tan(x)+sec(x))/(1-2*x+x^2) = (1- 12*x/ (Q(0)+6*x+3*x^2))/(1-x)^2, where Q(k) = 2*(4*k+1)*(32*k^2+16*k - x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ n! * n * (1+sin(1))/cos(1). - Vaclav Kotesovec, Jun 12 2015