A230997 Number of years after which it is possible to have a date falling on same day of the week, but the entire year does not have the same calendar, in the Gregorian calendar.
5, 7, 33, 35, 61, 63, 89, 91, 117, 131, 145, 159, 173, 187, 213, 227, 241, 255, 269, 283, 309, 311, 337, 339, 365, 367, 393, 395, 405, 407, 433, 435, 461, 463, 489, 491, 517, 531, 545, 559, 573, 587, 613, 627, 641, 655, 669, 683, 709, 711, 737, 739, 765, 767, 793, 795
Offset: 1
Examples
5 belongs to this sequence because January 1, 2012 falls on same day as January 1, 2017 but the calendar is not completely the same for both the years. In fact, a difference of 5 years can never produce the same calendar for the entire year. 7 belongs to this sequence because January 1, 2097 falls on same day as January 1, 2104 but the calendar is not completely the same for both the years. In fact, a difference of 7 years can never produce the same calendar for the entire year.
Links
- Time And Date, Repeating Calendar
- Time And Date, Gregorian Calendar
Programs
-
PARI
for(i=0,400,j=0;for(y=0,400,if(((5*(y\4)+(y%4)-(y\100)+(y\400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400))%7),j=1;break));for(y=0,400,if(((5*(y\4)+(y%4)-(y\100)+(y\400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400))%7)&&((5*(y\4)+(y%4)-(y\100)+(y\400)-!(y%4)+!(y%100)-!(y%400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400)-!((y+i)%4)+!((y+i)%100)-!((y+i)%400))%7),j=2;break));if(j==1,print1(i", ")))
Comments