cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aswini Vaidyanathan

Aswini Vaidyanathan's wiki page.

Aswini Vaidyanathan has authored 72 sequences. Here are the ten most recent ones:

A231238 Number of months after which either it is not possible to have a date to fall on the same day of the week, or that it is possible to have a date falling on the same day of the week and the two months have the same number of days, in the Gregorian calendar.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87
Offset: 1

Author

Aswini Vaidyanathan, Nov 06 2013

Keywords

Comments

In the Gregorian calendar, a non-century year is a leap year if and only if it is a multiple of 4 and a century year is a leap year if and only if it is a multiple of 400.
Assuming this fact, this sequence is periodic with a period of 4800.
This is the complement of A231007.

Crossrefs

Cf. A231239 (Julian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(4800,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-((i-1)\1200)+((i-1)\4800)-!((i-1)%48)+!((i-1)%1200)-!((i-1)%4800)-!((i-2)%48)+!((i-2)%1200)-!((i-2)%4800))))%7);x=vector(4800,i,n[((i-1)%12)+1]+!((i-2)%48)-!((i-2)%1200)+!((i-2)%4800));for(p=0,4800,j=0;for(q=0,4800,if(y[(q%4800)+1]==y[((q+p)%4800)+1],j=1;break));for(q=0,4800,if(y[(q%4800)+1]==y[((q+p)%4800)+1]&&x[(q%4800)+1]==x[((q+p)%4800)+1],j=2;break));if(j!=1,print1(p", ")))

A231237 Number of years after which it is either not possible to have a date falling on same day of the week, or the entire year can have the same calendar, in the Julian calendar.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Author

Aswini Vaidyanathan, Nov 06 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 28.
This is the complement of A231002.

Crossrefs

Cf. A231236 (Gregorian calendar).

Programs

  • PARI
    for(i=0,420,j=0;for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7),j=1;break));for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7),j=2;break));if(j!=1,print1(i", ")))

Formula

From Chai Wah Wu, Jun 04 2024: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 2*a(n-12) + 2*a(n-13) - 2*a(n-14) + 2*a(n-15) - 2*a(n-16) + 2*a(n-17) - 2*a(n-18) + 2*a(n-19) - 2*a(n-20) + 2*a(n-21) - 2*a(n-22) + 2*a(n-23) - 2*a(n-24) + 2*a(n-25) - a(n-26) for n > 26.
G.f.: x^2*(x^4 + 1)*(x^2 - x + 1)*(x^18 + x^17 + x^16 - x^13 + x^10 + x^9 + x^8 - x^5 + x^2 + x + 1)/((x - 1)^2*(x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). (End)

A231236 Number of years after which it is either not possible to have a date falling on same day of the week, or the entire year can have the same calendar, in the Gregorian calendar.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Author

Aswini Vaidyanathan, Nov 06 2013

Keywords

Comments

In the Gregorian calendar, a non-century year is a leap year if and only if it is a multiple of 4 and a century year is a leap year if and only if it is a multiple of 400.
Assuming this fact, this sequence is periodic with a period of 400.
This is the complement of A230997.

Crossrefs

Cf. A231237 (Julian calendar).

Programs

  • PARI
    for(i=0,400,j=0;for(y=0,400,if(((5*(y\4)+(y%4)-(y\100)+(y\400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400))%7),j=1;break));for(y=0,400,if(((5*(y\4)+(y%4)-(y\100)+(y\400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400))%7)&&((5*(y\4)+(y%4)-(y\100)+(y\400)-!(y%4)+!(y%100)-!(y%400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400)-!((y+i)%4)+!((y+i)%100)-!((y+i)%400))%7),j=2;break));if(j!=1,print1(i", ")))

A231239 Number of months after which either it is not possible to have a date to fall on the same day of the week, or that it is possible to have a date falling on the same day of the week and the two months have the same number of days, in the Julian calendar.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89
Offset: 1

Author

Aswini Vaidyanathan, Nov 06 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
This is the complement of A231012.

Crossrefs

Cf. A231238 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,j=0;for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1],j=1;break));for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1]&&x[(q%336)+1]==x[((q+p)%336)+1],j=2;break));if(j!=1,print1(p", ")))

A231014 Number of months after which it is not possible to have the same calendar for the entire month with the same number of days, in the Julian calendar.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 12, 13, 16, 19, 21, 24, 25, 27, 28, 30, 33, 36, 39, 41, 42, 44, 45, 47, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 66, 67, 70, 71, 73, 74, 76, 79, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 99, 100, 102, 104, 105, 107, 108, 111, 113, 116, 119, 120
Offset: 1

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
This is the complement of A231011.

Crossrefs

Cf. A231009 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,j=0;for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1]&&x[(q%336)+1]==x[((q+p)%336)+1],j=1;break));if(j==0,print1(p", ")))

A231013 Number of months after which it is not possible to have a date falling on the same day of the week, in the Julian calendar.

Original entry on oeis.org

2, 4, 5, 7, 10, 12, 13, 16, 21, 24, 25, 30, 33, 36, 39, 42, 44, 47, 48, 50, 51, 53, 56, 59, 62, 65, 67, 70, 76, 79, 82, 84, 85, 88, 90, 93, 96, 97, 99, 102, 105, 107, 108, 111, 116, 119, 120, 122, 125, 128, 134, 136, 137, 139, 142, 144, 145, 148, 151, 153, 154, 156, 157, 162
Offset: 1

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
This is the complement of A231010.

Crossrefs

Cf. A231008 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,j=0;for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1],j=1;break));if(j==0,print1(p", ")))

A231012 Number of months after which a date can fall on the same day of the week, but it is not possible that the two months have the same number of days, in the Julian calendar.

Original entry on oeis.org

1, 11, 19, 27, 28, 41, 45, 49, 58, 61, 66, 71, 73, 74, 83, 87, 91, 100, 104, 113, 121, 130, 131, 133, 138, 143, 146, 159, 160, 176, 177, 190, 193, 198, 203, 205, 206, 215, 223, 232, 236, 245, 249, 253, 262, 263, 265, 270, 275, 278, 287, 291, 295, 308, 309, 317, 325, 335
Offset: 1

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
These are the terms of A231010 not in A231011.

Crossrefs

Cf. A231007 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,j=0;for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1],j=1;break));for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1]&&x[(q%336)+1]==x[((q+p)%336)+1],j=2;break));if(j==1,print1(p", ")))

A231011 Number of months after which a date can fall on the same day of the week, and the two months can have the same number of days, in the Julian calendar.

Original entry on oeis.org

0, 3, 6, 8, 9, 14, 15, 17, 18, 20, 22, 23, 26, 29, 31, 32, 34, 35, 37, 38, 40, 43, 46, 52, 54, 55, 57, 60, 63, 64, 68, 69, 72, 75, 77, 78, 80, 81, 86, 89, 92, 94, 95, 98, 101, 103, 106, 109, 110, 112, 114, 115, 117, 118, 123, 124, 126, 127, 129, 132, 135, 140, 141, 147, 149, 150
Offset: 0

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.
This is a subsequence of A231010.

Crossrefs

Cf. A231006 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1]&&x[(q%336)+1]==x[((q+p)%336)+1],print1(p", ");break)))

A231010 Number of months after which a date can fall on the same day of the week, in the Julian calendar.

Original entry on oeis.org

0, 1, 3, 6, 8, 9, 11, 14, 15, 17, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 45, 46, 49, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 86, 87, 89, 91, 92, 94, 95, 98, 100, 101, 103, 104, 106, 109, 110, 112
Offset: 0

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 336.

Crossrefs

Cf. A231005 (Gregorian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(336,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-!((i-1)%48)-!((i-2)%48))))%7);x=vector(336,i,n[((i-1)%12)+1]+!((i-2)%48));for(p=0,336,for(q=0,336,if(y[(q%336)+1]==y[((q+p)%336)+1],print1(p", ");break)))

A231009 Number of months after which it is not possible to have the same calendar for the entire month with the same number of days, in the Gregorian calendar.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 12, 13, 16, 19, 21, 24, 25, 27, 28, 30, 33, 36, 39, 42, 44, 45, 47, 48, 51, 53, 56, 59, 61, 62, 65, 70, 71, 73, 74, 79, 82, 83, 85, 88, 91, 93, 96, 97, 99, 100, 102, 105, 108, 111, 116, 119, 120, 125, 128, 131, 133, 134, 137, 139, 142, 143, 145, 146, 148
Offset: 1

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Gregorian calendar, a non-century year is a leap year if and only if it is a multiple of 4 and a century year is a leap year if and only if it is a multiple of 400.
Assuming this fact, this sequence is periodic with a period of 4800.
This is the complement of A231006.

Crossrefs

Cf. A231014 (Julian calendar).

Programs

  • PARI
    m=[0,3,3,6,1,4,6,2,5,0,3,5];n=[31,28,31,30,31,30,31,31,30,31,30,31];y=vector(4800,i,(m[((i-1)%12)+1]+((5*((i-1)\48)+(((i-1)\12)%4)-((i-1)\1200)+((i-1)\4800)-!((i-1)%48)+!((i-1)%1200)-!((i-1)%4800)-!((i-2)%48)+!((i-2)%1200)-!((i-2)%4800))))%7);x=vector(4800,i,n[((i-1)%12)+1]+!((i-2)%48)-!((i-2)%1200)+!((i-2)%4800));for(p=0,4800,j=0;for(q=0,4800,if(y[(q%4800)+1]==y[((q+p)%4800)+1]&&x[(q%4800)+1]==x[((q+p)%4800)+1],j=1;break));if(j==0,print1(p", ")))