A231016 Numbers m with non-unique solution to m = +- 1^2 +- 2^2 +- ... +- k^2 with minimal k giving at least one solution.
0, 8, 9, 16, 18, 25, 31, 32, 33, 34, 39, 40, 41, 42, 43, 46, 48, 50, 52, 54, 58, 61, 67, 69, 74, 75, 77, 79, 80, 82, 84, 85, 87, 88, 90, 93, 95, 96, 97, 99, 101, 103, 104, 105, 107, 110, 111, 113, 115, 116, 117, 118, 121, 123, 127, 129, 131, 133, 135, 137, 141
Offset: 1
Keywords
Examples
0 = 1 + 4 - 9 + 16 - 25 - 36 + 49 = sum with signs reversed, so 0 is a member. 9 = - 1 - 4 + 9 + 16 + 25 - 36 = 1 + 4 + 9 - 16 - 25 + 36, so 9 is a member. A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is not a member, for k > 0.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Andrica, D., Vacaretu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
Programs
-
Maple
b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6; if n>m then 0 elif n=m then 1 else t:= b(abs(n-i^2), i-1); if t>1 then return 2 fi; t:= t+b(n+i^2, i-1); `if`(t>1, 2, t) fi end: a:= proc(n) option remember; local m, k; for m from 1+ `if`(n=1, -1, a(n-1)) do for k while b(m, k)=0 do od; if b(m, k)>1 then return m fi od end: seq(a(n), n=1..80); # Alois P. Heinz, Nov 06 2013
-
Mathematica
b[n_, i_] := b[n, i] = Module[{m, t}, m = (1+(3+2*i)*i)*i/6; Which[n>m, 0, n == m, 1, True, t = b[Abs[n-i^2], i-1]; If[t>1, Return[2]]; t = t + b[n+i^2, i-1]; If[t>1, 2, t]]]; a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n-1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k]>1, Return[m]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)
Formula
{ n : A231071(n) > 1 }.
Comments