cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231016 Numbers m with non-unique solution to m = +- 1^2 +- 2^2 +- ... +- k^2 with minimal k giving at least one solution.

Original entry on oeis.org

0, 8, 9, 16, 18, 25, 31, 32, 33, 34, 39, 40, 41, 42, 43, 46, 48, 50, 52, 54, 58, 61, 67, 69, 74, 75, 77, 79, 80, 82, 84, 85, 87, 88, 90, 93, 95, 96, 97, 99, 101, 103, 104, 105, 107, 110, 111, 113, 115, 116, 117, 118, 121, 123, 127, 129, 131, 133, 135, 137, 141
Offset: 1

Views

Author

Jonathan Sondow, Nov 06 2013

Keywords

Comments

The minimal k = A231015(m).
Complement of A231272.

Examples

			0 = 1 + 4 - 9 + 16 - 25 - 36 + 49 = sum with signs reversed, so 0 is a member.
9 = - 1 - 4 + 9 + 16 + 25 - 36 = 1 + 4 + 9 - 16 - 25 + 36, so 9 is a member.
A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is not a member, for k > 0.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6;
          if n>m then 0 elif n=m then 1 else
             t:= b(abs(n-i^2), i-1);
             if t>1 then return 2 fi;
             t:= t+b(n+i^2, i-1); `if`(t>1, 2, t)
          fi
        end:
    a:= proc(n) option remember; local m, k;
          for m from 1+ `if`(n=1, -1, a(n-1)) do
            for k while b(m, k)=0 do od;
            if b(m, k)>1 then return m fi
          od
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Nov 06 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m, t}, m = (1+(3+2*i)*i)*i/6; Which[n>m, 0, n == m, 1, True, t = b[Abs[n-i^2], i-1]; If[t>1, Return[2]]; t = t + b[n+i^2, i-1]; If[t>1, 2, t]]]; a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n-1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k]>1, Return[m]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)

Formula

{ n : A231071(n) > 1 }.