cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231071 Number of solutions to n = +- 1^2 +- 2^2 +- 3^2 +- 4^2 +- ... +- k^2 for minimal k giving at least one solution.

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 9, 1, 3, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 4, 3, 1, 2, 1, 2, 2, 1, 2, 1, 14, 2, 1, 3, 2, 1, 2, 1, 1, 7, 1, 3, 2, 5, 1, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2013

Keywords

Comments

This type of sequence was first studied by Andrica and Vacaretu. - Jonathan Sondow, Nov 06 2013

Examples

			a(8) = 3: 8 = -1-4-9-16+25-36+49 = -1-4+9+16-25-36+49 = -1+4+9-16+25+36-49.
a(9) = 2: 9 = -1-4+9+16+25-36 = 1+4+9-16-25+36.
a(10) = 1: 10 = -1+4-9+16.
		

Crossrefs

Cf. A083527, A158092 (extremal sums).

Programs

  • Maple
    b:= proc(n, i) option remember; (m->`if`(n>m, 0, `if`(n=m, 1,
          b(n+i^2, i-1) +b(abs(n-i^2), i-1))))((1+(3+2*i)*i)*i/6)
        end:
    a:= proc(n) local k; for k while b(n, k)=0 do od; b(n, k) end:
    seq(a(n), n=0..100);
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1,
       b[n+i^2, i-1] + b[Abs[n-i^2], i-1]]]][(1+(3+2*i)*i)*i/6];
    a[n_] := Module[{k}, For[k = 1, b[n, k] == 0, k++]; b[n, k]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)

Formula

From Jonathan Sondow, Nov 03 2013: (Start)
a(n(n+1)(2n+1)/6) = 1 for n > 0: n(n+1)(2n+1)/6 = 1+4+9+...+n^2. See A000330.
a(n(n+1)(2n+1)/6 - 2) = 1 for n > 1: n(n+1)(2n+1)/6 - 2 = -1+4+9+...+n^2. (End)