A231071 Number of solutions to n = +- 1^2 +- 2^2 +- 3^2 +- 4^2 +- ... +- k^2 for minimal k giving at least one solution.
2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 9, 1, 3, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 4, 3, 1, 2, 1, 2, 2, 1, 2, 1, 14, 2, 1, 3, 2, 1, 2, 1, 1, 7, 1, 3, 2, 5, 1, 2, 1
Offset: 0
Examples
a(8) = 3: 8 = -1-4-9-16+25-36+49 = -1-4+9+16-25-36+49 = -1+4+9-16+25+36-49. a(9) = 2: 9 = -1-4+9+16+25-36 = 1+4+9-16-25+36. a(10) = 1: 10 = -1+4-9+16.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Dorin Andrica and Daniel Vacaretu, Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
Programs
-
Maple
b:= proc(n, i) option remember; (m->`if`(n>m, 0, `if`(n=m, 1, b(n+i^2, i-1) +b(abs(n-i^2), i-1))))((1+(3+2*i)*i)*i/6) end: a:= proc(n) local k; for k while b(n, k)=0 do od; b(n, k) end: seq(a(n), n=0..100);
-
Mathematica
b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[n+i^2, i-1] + b[Abs[n-i^2], i-1]]]][(1+(3+2*i)*i)*i/6]; a[n_] := Module[{k}, For[k = 1, b[n, k] == 0, k++]; b[n, k]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)
Formula
From Jonathan Sondow, Nov 03 2013: (Start)
a(n(n+1)(2n+1)/6) = 1 for n > 0: n(n+1)(2n+1)/6 = 1+4+9+...+n^2. See A000330.
a(n(n+1)(2n+1)/6 - 2) = 1 for n > 1: n(n+1)(2n+1)/6 - 2 = -1+4+9+...+n^2. (End)
Comments