A231095 Decimal expansion of the power tower of Euler constant gamma.
6, 8, 5, 9, 4, 7, 0, 3, 5, 1, 6, 7, 4, 2, 8, 4, 8, 1, 8, 7, 5, 7, 3, 5, 9, 6, 1, 9, 8, 0, 4, 1, 7, 3, 5, 8, 7, 4, 8, 8, 6, 2, 1, 4, 1, 8, 7, 0, 3, 0, 1, 5, 0, 6, 7, 0, 1, 8, 6, 6, 8, 5, 8, 1, 7, 0, 3, 0, 1, 8, 7, 6, 7, 1, 4, 6, 9, 5, 7, 3, 8, 5, 6, 1, 7, 8, 3, 7, 3, 7, 0, 1, 6, 5, 9, 1, 1, 1, 0, 4, 8, 9, 1, 5, 0
Offset: 0
Examples
0.685947035167428481875735 ...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Wikipedia, Euler-Mascheroni constant
- Wikipedia, Lambert W function
- Wikipedia, Tetration
Crossrefs
Cf. A001620.
Programs
-
Maple
evalf(-LambertW(-log(gamma))/log(gamma), 120); # Vaclav Kotesovec, Oct 26 2014
-
Mathematica
c = EulerGamma; RealDigits[ ProductLog[-Log[c]]/Log[c], 10, 111] (* Robert G. Wilson v, Oct 24 2014 *)
-
PARI
-lambertw(-log(Euler))/log(Euler)
Formula
In general, for 1/E^E <= c < 1, c^c^c^... = LambertW(log(1/c))/log(1/c). Hence, this number is LambertW(log(1/gamma))/log(1/gamma).