A231096 Decimal expansion of the power tower of the inverse of golden ratio.
7, 1, 0, 4, 3, 9, 2, 8, 7, 1, 5, 6, 5, 0, 3, 1, 8, 8, 6, 6, 9, 3, 4, 5, 8, 9, 3, 0, 6, 0, 7, 2, 1, 1, 3, 2, 4, 8, 2, 8, 4, 5, 8, 4, 3, 9, 4, 3, 4, 4, 6, 0, 9, 6, 9, 0, 0, 8, 9, 5, 1, 4, 2, 9, 9, 1, 6, 0, 1, 5, 9, 7, 2, 6, 0, 9, 6, 7, 2, 7, 3, 3, 9, 9, 0, 5, 9, 4, 6, 5, 3, 5, 7, 2, 9, 5, 5, 6, 1, 3, 9, 2, 5, 3, 2
Offset: 0
Examples
0.710439287156503188669345...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1999
- Wikipedia, Lambert W function
- Wikipedia, Tetration
Programs
-
Mathematica
RealDigits[ LambertW[ Log[ GoldenRatio]]/Log[ GoldenRatio], 10, 111][[1]] (* Robert G. Wilson v, Feb 11 2015 *)
-
PARI
lambertw(log(phi))/log(phi)
Formula
When 1/E^E <= c < 1, then c^c^c^... = LambertW(log(1/c))/log(1/c).
Comments