A231131 T(n,k) = Number of (n+1) X (k+1) white-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
1, 2, 2, 6, 8, 6, 16, 40, 40, 16, 44, 176, 308, 176, 44, 120, 808, 2260, 2260, 808, 120, 328, 3584, 16812, 27664, 16812, 3584, 328, 896, 16368, 124644, 336004, 336004, 124644, 16368, 896, 2448, 72640, 924900, 4150352, 6794904, 4150352, 924900, 72640, 2448
Offset: 1
Examples
Some solutions for n=2, k=4 ..0..x..1..x..1....0..x..0..x..1....0..x..1..x..0....0..x..0..x..1 ..x..1..x..2..x....x..1..x..0..x....x..1..x..2..x....x..1..x..2..x ..2..x..2..x..1....2..x..1..x..1....0..x..0..x..0....0..x..2..x..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Crossrefs
Column 1 is A002605.
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2);
k=2: a(n) = 22*a(n-2) -36*a(n-4) +16*a(n-6);
k=3: [order 8];
k=4: [order 18, even terms];
k=5: [order 34];
k=6: [order 90, even terms].
Comments