A231147 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) = (x^n - 1)/(x - 1).
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, 1, 6, 5, 14, 9, 14, 5, 6, 1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 1, 8, 7, 27, 20, 49, 29, 49, 20, 27, 7, 8, 1, 1, 1, 1, 9, 8, 35, 27, 76, 49, 99, 49, 76, 27, 35, 8, 9
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 3 1 1 1 1 4 3 4 1 1 1 1 5 4 9 4 5 1 1 1 1 6 5 14 9 14 5 6 1 1 1 1 7 6 20 14 29 14 20 6 7 1 1 1 1 8 7 27 20 49 29 49 20 27 7 8 1 1 1 1 9 8 35 27 76 49 99 49 76 27 35 8 9 1 1 First 3 polynomials: 1, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4
Links
- John Tyler Rascoe, Rows n = 1..100, flattened
Crossrefs
Programs
-
Mathematica
z = 60; p[n_, x_] := p[x] = (x^n - 1)/(x - 1); Table[p[n, x], {n, 1, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}] Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
-
PARI
A231147_row(n) = {Vecrev(Vec(numerator((-1+(x+(1/x))^n)/(x+(1/x)-1))))} \\ John Tyler Rascoe, Sep 10 2024
Comments