cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231147 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) = (x^n - 1)/(x - 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, 1, 6, 5, 14, 9, 14, 5, 6, 1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 1, 8, 7, 27, 20, 49, 29, 49, 20, 27, 7, 8, 1, 1, 1, 1, 9, 8, 35, 27, 76, 49, 99, 49, 76, 27, 35, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2013

Keywords

Comments

From Gus Wiseman, Mar 19 2023: (Start)
Also appears to be the number of nonempty subsets of {1,...,n} with median k, where k ranges from 1 to n in steps of 1/2, and the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {1,2} {2} {1,4} {3} {2,5} {4} {4,5} {5}
{1,3} {2,3} {1,5} {3,4} {3,5}
{1,2,3} {1,2,3,4} {2,4} {1,3,4,5} {1,4,5}
{1,2,4} {1,2,3,5} {1,3,4} {2,3,4,5} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Central diagonals T(n,(n+1)/2) appear to be A100066 (bisection A006134).
For mean instead of median we have A327481.
For partitions instead of subsets we have A359893, full steps A359901.
Central diagonals T(n,n/2) are A361801 (bisection A079309).
(End)

Examples

			Triangle begins:
  1
  1  1  1
  1  1  3  1  1
  1  1  4  3  4  1  1
  1  1  5  4  9  4  5  1  1
  1  1  6  5 14  9 14  5  6  1  1
  1  1  7  6 20 14 29 14 20  6  7  1  1
  1  1  8  7 27 20 49 29 49 20 27  7  8  1  1
  1  1  9  8 35 27 76 49 99 49 76 27 35  8  9  1  1
First 3 polynomials: 1, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4
		

Crossrefs

Cf. A231148.
Row sums are 2^n-1 = A000225(n).
Row lengths are 2n-1 = A005408(n-1).
Removing every other column appears to give A013580.

Programs

  • Mathematica
    z = 60; p[n_, x_] := p[x] = (x^n - 1)/(x - 1); Table[p[n, x], {n, 1, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
    Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
  • PARI
    A231147_row(n) = {Vecrev(Vec(numerator((-1+(x+(1/x))^n)/(x+(1/x)-1))))} \\ John Tyler Rascoe, Sep 10 2024