cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231168 Number of ways to write n = x + y + z (x, y, z > 0) such that x^2 + y^2 + z^2 + z is a square, and 6*x + 1, 6*y - 1, 6*z -1 are all prime.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 2, 2, 2, 1, 3, 2, 5, 1, 4, 3, 2, 3, 1, 1, 4, 2, 5, 3, 3, 4, 4, 8, 2, 3, 8, 2, 4, 3, 4, 8, 7, 2, 2, 8, 3, 8, 6, 1, 6, 8, 4, 1, 9, 2, 4, 10, 6, 1, 7, 11, 7, 10, 2, 6, 9, 3, 6, 3, 6, 6, 6, 8, 4, 8, 4, 4, 9, 2, 11, 4, 9, 6, 1, 4, 5, 5, 10, 7, 5, 6, 6, 7, 5, 8, 17, 8, 5, 2, 7, 8, 11, 10, 6, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 04 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.

Examples

			a(19) = 1 since 19 = 13 + 5 + 1 with 13^2 + 5^2 + 1^2 + 1 = 14^2, and 6*13 + 1 = 79, 6*5 - 1 = 29, 6*1 - 1 = 5 are all prime.
a(444) = 1 since 444 = 76 + 28 + 340 with 76^2 + 28^2 + 340^2 + 340 = 350^2, and 6*76 + 1 = 457, 6*28 - 1 = 167, 6*340 - 1 = 2039 are all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    a[n_]:=Sum[If[PrimeQ[6i+1]&&PrimeQ[6j-1]&&PrimeQ[6(n-i-j)-1]&&SQ[i^2+j^2+(n-i-j)^2+(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]