A231174 Integer areas of integer-sided triangles such that the distance between the incenter and the circumcenter is an integer.
48, 192, 432, 768, 1200, 1728, 2352, 3072, 3840, 3888, 4800, 5808, 6000, 6912, 8112, 9408, 10800, 12288, 12960, 13872, 15360, 15552, 17328, 19200, 21168, 23232, 24000, 25392, 26880, 27648, 30000, 30720, 32448, 32928, 34560, 34992, 37632, 40368, 43200, 46128
Offset: 1
Keywords
Links
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- Eric Weisstein's World of Mathematics, Circumcenter.
- Eric Weisstein's World of Mathematics, Incenter.
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn=800;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a)(s-b)(s-c);If[area2>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])*(a*b*c/(4*Sqrt[area2])-2*Sqrt[area2]/s)]],AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]
Comments