A231179 Boustrophedon transform of nonnegative integers, cf. A001477.
0, 1, 4, 12, 36, 120, 462, 2058, 10472, 59976, 381770, 2673374, 20422908, 169020852, 1506427678, 14385323610, 146527700944, 1585801332848, 18171944693586, 219803766565366, 2798628476670180, 37414906698747564, 524019526485293894, 7672827408344428242
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a231179 n = sum $ zipWith (*) (a109449_row n) [0..]
-
Mathematica
a[n_] := n! SeriesCoefficient[x Exp[x] (1+Sin[x]) / Cos[x], {x, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
-
Python
from itertools import count, islice, accumulate def A231179_gen(): # generator of terms blist = tuple() for i in count(0): yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1] A231179_list = list(islice(A231179_gen(),30)) # Chai Wah Wu, Jun 11 2022
Formula
a(n) = A231200(n)/2.
a(n) = Sum_{k=1..n} k * A109449(n,k).
E.g.f.: x*exp(x)*(sec(x)+tan(x)). (After Sergei N. Gladkovskii in A000660.) - Peter Luschny, Oct 28 2014
a(n) ~ n! * exp(Pi/2) * 2^(n+1) / Pi^n. - Vaclav Kotesovec, Jun 12 2015