cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231179 Boustrophedon transform of nonnegative integers, cf. A001477.

Original entry on oeis.org

0, 1, 4, 12, 36, 120, 462, 2058, 10472, 59976, 381770, 2673374, 20422908, 169020852, 1506427678, 14385323610, 146527700944, 1585801332848, 18171944693586, 219803766565366, 2798628476670180, 37414906698747564, 524019526485293894, 7672827408344428242
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2013

Keywords

Crossrefs

Programs

  • Haskell
    a231179 n = sum $ zipWith (*) (a109449_row n) [0..]
    
  • Mathematica
    a[n_] := n! SeriesCoefficient[x Exp[x] (1+Sin[x]) / Cos[x], {x, 0, n}];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
  • Python
    from itertools import count, islice, accumulate
    def A231179_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
    A231179_list = list(islice(A231179_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = A231200(n)/2.
a(n) = Sum_{k=1..n} k * A109449(n,k).
E.g.f.: x*exp(x)*(sec(x)+tan(x)). (After Sergei N. Gladkovskii in A000660.) - Peter Luschny, Oct 28 2014
a(n) = A000660(n) - A000111(n). - Sergei N. Gladkovskii, Oct 28 2014
a(n) ~ n! * exp(Pi/2) * 2^(n+1) / Pi^n. - Vaclav Kotesovec, Jun 12 2015