A231181
Expansion of 1/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
Original entry on oeis.org
1, 1, 5, 6, 20, 27, 75, 110, 275, 429, 1001, 1637, 3639, 6172, 13243, 23104, 48280, 86090, 176341, 319792, 645150, 1185305, 2363596, 4386331, 8669142, 16212913, 31825005, 59873834, 116914020, 220964744, 429737220, 815057639, 1580244061
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..3532
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-3,1).
-
CoefficientList[Series[1/(1-x-4x^2+3x^3+3x^4-x^5),{x,0,50}],x] (* or *) LinearRecurrence[{1,4,-3,-3,1},{1,1,5,6,20},50] (* Harvey P. Dale, Nov 13 2013 *)
A231182
Coefficients for the nonnegative powers of rho(11) = 2*cos(Pi/11) when written in the power basis of the degree 5 number field Q(rho(11)). Coefficients for the zeroth and fourth powers.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 5, 6, 20, 27, 75, 110, 275, 429, 1001, 1637, 3639, 6172, 13243, 23104, 48280, 86090, 176341, 319792, 645150, 1185305, 2363596, 4386331, 8669142, 16212913, 31825005, 59873834, 116914020, 220964744, 429737220, 815057639
Offset: 0
rho(11)^4 = 0*1 - 0*rho(11) - 0*rho(11)^2 + 0*rho(11)^3 + 1*rho(11)^4 (trivial).
rho(11)^5 = 1*1 - 3*rho(11) - 3*rho(11)^2 + 4*rho(11)^3 + 1*rho(11)^4. Approximately 26.02309649, with rho(11) approximately 1.918985947.
A231184
Coefficients of the nonnegative powers of rho(11) = 2*cos(Pi/11) when written in the power basis of the degree 5 number field Q(rho(11)). Negative of the coefficients of the second power.
Original entry on oeis.org
-1, 0, 0, 3, 6, 17, 32, 73, 135, 286, 528, 1080, 2002, 4015, 7485, 14827, 27796, 54606, 102869, 200909, 380006, 739013, 1402309, 2718485, 5171573, 10001553, 19064476, 36802823, 70259834, 135444612, 258883604, 498538557, 953762458
Offset: 0
rho(11)^5 = 1*1 - 3*rho(11) - 3*rho(11)^2 + 4*rho(11)^3 + 1*rho(11)^4. Approximately 26.02309649, with rho(11) approximately 1.918985947.
-
LinearRecurrence[{1,4,-3,-3,1},{-1,0,0,3,6},40] (* Harvey P. Dale, Apr 26 2019 *)
A231185
Coefficients of the nonnegative powers of rho(11) = 2*cos(Pi/11) when written in the power basis of the degree 5 number field Q(rho(11)). Coefficients of the third power.
Original entry on oeis.org
1, 0, 4, 1, 14, 7, 48, 35, 165, 154, 572, 636, 2002, 2533, 7071, 9861, 25176, 37810, 90251, 143451, 325358, 540155, 1178291, 2022735, 4282811, 7543771, 15612092, 28048829, 57040186, 104050724, 208772476, 385320419, 765186422, 1425038684
Offset: 0
rho(11)^5 = 1*1 - 3*rho(11) - 3*rho(11)^2 + 4*rho(11)^3 + 1*rho(11)^4. Approximately 26.02309649, with rho(11) approximately 1.918985947.
-
LinearRecurrence[{1,4,-3,-3,1},{1,0,4,1,14},40] (* Harvey P. Dale, Aug 03 2023 *)
Showing 1-4 of 4 results.
Comments