A231185 Coefficients of the nonnegative powers of rho(11) = 2*cos(Pi/11) when written in the power basis of the degree 5 number field Q(rho(11)). Coefficients of the third power.
1, 0, 4, 1, 14, 7, 48, 35, 165, 154, 572, 636, 2002, 2533, 7071, 9861, 25176, 37810, 90251, 143451, 325358, 540155, 1178291, 2022735, 4282811, 7543771, 15612092, 28048829, 57040186, 104050724, 208772476, 385320419, 765186422, 1425038684
Offset: 0
Examples
rho(11)^5 = 1*1 - 3*rho(11) - 3*rho(11)^2 + 4*rho(11)^3 + 1*rho(11)^4. Approximately 26.02309649, with rho(11) approximately 1.918985947.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{1,4,-3,-3,1},{1,0,4,1,14},40] (* Harvey P. Dale, Aug 03 2023 *)
Formula
G.f.: (1 - x)/(1-x-4*x^2+3*x^3+3*x^4-x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n >= 0, with a(-5)=-2, a(-4)=-1 , a(-3)=a(-2)=a(-1)=0.
a(n) = b(n) - b(n-1) for n>=0, with b(n) = A231181(n) (first differences).
Comments