cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356735 Number of distinct parts that have neighbors in the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the number of distinct prime indices x of n such that either x - 1 or x + 1 is also a prime index of n, where a prime index of n is a number x such that prime(x) divides n.

Examples

			The prime indices of 42 are {1,2,4}, of which 1 and 2 have neighbors, so a(42) = 2.
The prime indices of 462 are {1,2,4,5}, all of which have neighbors, so a(462) = 4.
The prime indices of 990 are {1,2,2,3,5}, of which 1, 2, and 3 have neighbors, so a(990) = 3.
The prime indices of 1300 are {1,1,3,3,6}, none of which have neighbors, so a(1300) = 0.
		

Crossrefs

Positions of first appearances are A002110 without 1 (or A231209).
The complement is counted by A356733.
Positions of zeros are A356734.
Positions of positive terms are A356736.
A001221 counts distinct prime factors, sum A001414.
A007690 counts partitions with no singletons, complement A183558.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A073491 lists numbers with gapless prime indices, complement A073492.
A355393 counts partitions w/o a neighborless singleton, complement A356235.
A355394 counts partitions w/o a neighborless part, complement A356236.
A356226 lists the lengths of maximal gapless submultisets of prime indices:
- length: A287170 (firsts A066205)
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Union[primeMS[n]], MemberQ[primeMS[n],#-1]|| MemberQ[primeMS[n],#+1]&]],{n,100}]
  • PARI
    A356735(n) = if(1==n,0,my(pis=apply(primepi,factor(n)[,1])); omega(n)-sum(i=1, #pis, ((n%prime(pis[i]+1)) && (pis[i]==1 || (n%prime(pis[i]-1)))))); \\ Antti Karttunen, Jan 28 2025

Formula

a(n) + A356733(n) = A001221(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 28 2025

A295644 Rectangular array, by antidiagonals; row 1 is the ordered list of all k having at most 2 unitary divisors; for n > 1, row n is the ordered list of all k having 2^n unitary divisors.

Original entry on oeis.org

1, 2, 6, 3, 10, 30, 4, 12, 42, 210, 5, 14, 60, 330, 2310, 7, 15, 66, 390, 2730, 30030, 8, 18, 70, 420, 3570, 39270, 510510, 9, 20, 78, 462, 3990, 43890, 570570
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2018

Keywords

Comments

Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.
row 1: A000961
row 2: A007774
row 3: A033992
row 4: A033993
col 1: A231209

Examples

			Northwest corner:
     1    2    3    4    5    7    8    9   11
     6   10   12   14   15   18   20   21   22
    30   42   60   66   70   78   84   90  102
   210  330  390  420  462  510  546  570  630
  2310 2730 3570 3990 4290 4620 4830 5460 5610
		

Crossrefs

Cf. A034444.
As an array, essentially the same as A125666.

Programs

  • Mathematica
    z = 10000;
    t = Table[2^PrimeNu[n], {n, 1, z}] ;(*  A035555 *)
    r[n_] := Flatten[Position[t, 2^n]]; r[1] = Join[{1}, r[1]];
    v[n_, k_] := r[n][[k]];
    TableForm[Table[v[n, k], {n, 1, 5}, {k, 1, 15}]]  (* A295644 array *)
    Table[v[n - k + 1, k], {n, 5}, {k, n, 1, -1}] // Flatten  (* A295644 sequence *)
Showing 1-2 of 2 results.