cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231210 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of some of the consecutive patterns 123, 1432, 2431, 3421; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 9, 1, 46, 59, 14, 1, 177, 358, 164, 20, 1, 790, 2235, 1589, 398, 27, 1, 4024, 14658, 15034, 5659, 909, 35, 1, 23056, 103270, 139465, 77148, 17875, 2021, 44, 1, 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1, 1027850, 6315499
Offset: 0

Views

Author

Alois P. Heinz, Nov 05 2013

Keywords

Examples

			T(3,1) = 1: 123.
T(4,0) = 14: 1324, 1423, 2143, 2314, 2413, 3142, 3214, 3241, 3412, 4132, 4213, 4231, 4312, 4321.
T(4,1) = 9: 1243, 1342, 1432, 2134, 2341, 2431, 3124, 3421, 4123.
T(4,2) = 1: 1234.
T(5,2) = 14: 12354, 12453, 12543, 13452, 13542, 14532, 21345, 23451, 23541, 24531, 31245, 34521, 41235, 51234.
T(5,3) = 1: 12345.
Triangle T(n,k) begins:
:  0 :      1;
:  1 :      1;
:  2 :      2;
:  3 :      5,      1;
:  4 :     14,      9,       1;
:  5 :     46,     59,      14,      1;
:  6 :    177,    358,     164,     20,      1;
:  7 :    790,   2235,    1589,    398,     27,     1;
:  8 :   4024,  14658,   15034,   5659,    909,    35,    1;
:  9 :  23056, 103270,  139465,  77148,  17875,  2021,   44,  1;
: 10 : 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1;
		

Crossrefs

Columns k=0-2 give: A231211, A231228, A228422.
Row sums give: A000142.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u+j-1, o-j, [2, 2, 2][t])*`if`(t=2, x, 1), j=1..o)+
          add(b(u-j, o+j-1, [1, 3, 1][t])*`if`(t=3, x, 1), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[ Sum[b[u+j-1, o-j, {2, 2, 2}[[t]]]*If[t == 2, x, 1], {j, 1, o}] + Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]]*If[t == 3, x, 1], {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)