A231211 Number of permutations of [n] avoiding simultaneously consecutive patterns 123, 1432, 2431, and 3421.
1, 1, 2, 5, 14, 46, 177, 790, 4024, 23056, 146777, 1027850, 7852184, 64985116, 579191277, 5530869310, 56336971744, 609708912976, 6986749484177, 84510154473170, 1076016705993704, 14385283719409636, 201475033030143477, 2950048762311387430, 45073424916825354064
Offset: 0
Keywords
Examples
a(3) = 5: 132, 213, 231, 312, 321. a(4) = 14: 1324, 1423, 2143, 2314, 2413, 3142, 3214, 3241, 3412, 4132, 4213, 4231, 4312, 4321. a(5) = 46: 13254, 14253, 14352, ..., 54231, 54312, 54321. a(6) = 177: 132546, 132645, 142536, ..., 654231, 654312, 654321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t=4, 0, `if`(u+o=0, 1, add(b(u+j-1, o-j, [2, 4, 2][t]), j=1..o)+ add(b(u-j, o+j-1, [1, 3, 4][t]), j=1..u))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..30); # second Maple program n:=40: c[0,0]:=1: for i to n-1 do c[i,0]:=0 end do: for i to n-1 do for j to i do c[i,j] := c[i,j-1] + c[i-1,i-j] + 1 end do end do: 1, seq(c[k, k]/2, k=1..n-1); # Sergei N. Gladkovskii, Jul 27 2015
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t == 4, 0, If[u + o == 0, 1, Sum[b[u + j - 1, o - j, {2, 4, 2}[[t]]], {j, 1, o}] + Sum[b[u - j, o + j - 1, {1, 3, 4}[[t]]], {j, 1, u}]]]; a[n_] := b[n, 0, 1]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)
Formula
a(n) ~ (1+exp(Pi/2)) * (2/Pi)^(n+1) * n!. - Vaclav Kotesovec, Aug 28 2014
Comments