A231219 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and vertical neighbors, with values 0..2 introduced in row major order.
3, 4, 4, 7, 9, 7, 12, 22, 22, 12, 23, 59, 93, 59, 23, 44, 156, 408, 408, 156, 44, 87, 413, 1793, 2892, 1793, 413, 87, 172, 1098, 7844, 20027, 20027, 7844, 1098, 172, 343, 2919, 34609, 139438, 226764, 139438, 34609, 2919, 343, 684, 7760, 152421, 969461
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1..1....0..0..0..0..0....0..0..0..0..0....0..0..1..1..0 ..0..0..0..1..1....1..1..1..1..1....1..1..1..2..2....0..0..1..1..0 ..0..0..0..2..2....1..0..0..0..1....1..1..1..2..2....0..0..1..1..0 ..0..0..0..2..2....1..0..0..0..1....1..1..1..2..2....0..0..1..1..0 ..2..2..2..2..2....1..1..1..1..1....1..1..1..2..2....0..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..127
Crossrefs
Column 1 is A023105(n+2)
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3) -2*a(n-4)
k=3: [order 19]
k=4: [order 68]
Comments