A231227 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
1, 2, 2, 3, 4, 3, 6, 8, 8, 6, 11, 17, 21, 17, 11, 22, 45, 54, 54, 45, 22, 43, 103, 185, 182, 185, 103, 43, 86, 264, 552, 812, 812, 552, 264, 86, 171, 676, 1799, 2962, 4298, 2962, 1799, 676, 171, 342, 1724, 5900, 12179, 19935, 19935, 12179, 5900, 1724, 342, 683, 4501
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..0..0..0 ..0..0..1..1..0..0....0..0..0..0..1..1....0..0..1..1..0..0....0..0..1..1..0..0 ..1..1..1..1..1..1....1..1..1..1..0..0....1..1..1..1..1..1....1..1..1..1..1..1 ..1..1..1..1..1..1....1..1..1..1..0..0....1..1..1..1..1..1....1..1..1..1..1..1 ..0..0..1..1..2..2....0..0..0..0..1..1....0..0..1..1..0..0....2..2..1..1..0..0 ..0..0..0..2..2..2....0..0..0..0..1..1....0..0..0..0..0..0....2..2..2..0..0..0 ..0..0..0..2..2..2....0..0..0..0..1..1....0..0..0..0..0..0....2..2..2..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..144
Crossrefs
Column 1 is A005578
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: [order 11]
k=3: [order 13]
k=4: [order 96]
Comments