A231228 Number of permutations of [n] with exactly one occurrence of one of the consecutive patterns 123, 1432, 2431, 3421.
0, 0, 0, 1, 9, 59, 358, 2235, 14658, 103270, 778451, 6315499, 54733657, 507655301, 5003179539, 52430810493, 580611272956, 6796733911852, 83658527086447, 1083027034959367, 14678725047527255, 208344799726820123, 3084495765476262875, 47646333262275943521
Offset: 0
Keywords
Examples
a(3) = 1: 123. a(4) = 9: 1243, 1342, 1432, 2134, 2341, 2431, 3124, 3421, 4123. a(5) = 59: 12435, 12534, 13245, ..., 53124, 53421, 54123. a(6) = 358: 124365, 125364, 125463, ..., 653124, 653421, 654123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=1 of A231210.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t=7, 0, `if`(u+o=0, `if`(t in [4, 5, 6], 1, 0), add(b(u+j-1, o-j, [2, 5, 2, 5, 7, 5][t]), j=1..o)+ add(b(u-j, o+j-1, [1, 3, 4, 4, 6, 7][t]), j=1..u))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t==7, 0, If[u+o==0, If[4 <= t <= 6, 1, 0], Sum[b[u + j - 1, o - j, {2, 5, 2, 5, 7, 5}[[t]]], {j, 1, o}] + Sum[b[u - j, o + j - 1, {1, 3, 4, 4, 6, 7}[[t]]], {j, 1, u}]]]; a[n_] := b[n, 0, 1]; a /@ Range[0, 25] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
Formula
a(n) ~ c * (2/Pi)^n * n! * n, where c = 3.08472832460941829086964816782... . - Vaclav Kotesovec, Aug 28 2014