cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231263 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

Original entry on oeis.org

2, 3, 6, 4, 15, 22, 7, 32, 89, 86, 12, 83, 304, 547, 342, 23, 211, 1253, 2982, 3381, 1366, 44, 557, 5109, 19503, 29366, 20911, 5462, 87, 1471, 21894, 126851, 302121, 289230, 129329, 21846, 172, 3909, 94234, 866396, 3130708, 4670875, 2848550, 799835, 87382
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2013

Keywords

Comments

Table starts
......2........3..........4............7.............12...............23
......6.......15.........32...........83............211..............557
.....22.......89........304.........1253...........5109............21894
.....86......547.......2982........19503.........126851...........866396
....342.....3381......29366.......302121........3130708.........34170727
...1366....20911.....289230......4670875.......77333664.......1350570015
...5462...129329....2848550.....72212345.....1911322499......53369789699
..21846...799835...28054534...1116538567....47238533054....2108712981800
..87382..4946509..276301638..17264116873..1167469879103...83318930054700
.349526.30591143.2721223974.266940042371.28853204049176.3292096503338981

Examples

			Some solutions for n=3 k=4
..0..0..0..0..1....0..0..0..0..0....0..0..1..1..1....0..0..1..1..1
..0..0..0..1..0....0..0..0..0..0....0..1..0..0..0....0..1..1..1..1
..1..1..1..0..0....0..1..1..1..0....1..0..2..2..1....2..2..0..0..2
..1..1..1..1..1....1..1..1..0..0....0..2..2..1..1....2..0..0..2..2
		

Crossrefs

Column 1 is A047849
Row 1 is A023105(n+1)

Formula

Empirical for column k:
k=1: a(n) = 5*a(n-1) -4*a(n-2)
k=2: a(n) = 10*a(n-1) -29*a(n-2) +36*a(n-3) -16*a(n-4)
k=3: [order 7]
k=4: [order 12]
k=5: [order 32]
k=6: [order 67] for n>68
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
n=2: [order 9]
n=3: [order 27] for n>28