A231263 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
2, 3, 6, 4, 15, 22, 7, 32, 89, 86, 12, 83, 304, 547, 342, 23, 211, 1253, 2982, 3381, 1366, 44, 557, 5109, 19503, 29366, 20911, 5462, 87, 1471, 21894, 126851, 302121, 289230, 129329, 21846, 172, 3909, 94234, 866396, 3130708, 4670875, 2848550, 799835, 87382
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0..1....0..0..0..0..0....0..0..1..1..1....0..0..1..1..1 ..0..0..0..1..0....0..0..0..0..0....0..1..0..0..0....0..1..1..1..1 ..1..1..1..0..0....0..1..1..1..0....1..0..2..2..1....2..2..0..0..2 ..1..1..1..1..1....1..1..1..0..0....0..2..2..1..1....2..0..0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = 5*a(n-1) -4*a(n-2)
k=2: a(n) = 10*a(n-1) -29*a(n-2) +36*a(n-3) -16*a(n-4)
k=3: [order 7]
k=4: [order 12]
k=5: [order 32]
k=6: [order 67] for n>68
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
n=2: [order 9]
n=3: [order 27] for n>28
Comments