A231272 Numbers m with unique solution to m = +-1^2+-2^2+-3^2+-4^2+-...+-k^2 with minimal k giving at least one solution.
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 35, 36, 37, 38, 44, 45, 47, 49, 51, 53, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 76, 78, 81, 83, 86, 89, 91, 92, 94, 98, 100, 102, 106, 108, 109, 112
Offset: 1
Keywords
Examples
10 is member of the sequence with unique minimal solution 10 = -1+4-9+16. A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is a member for k > 0. - _Jonathan Sondow_, Nov 06 2013
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3000
- Andrica, D., Vacaretu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
Programs
-
Maple
b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6; if n>m then 0 elif n=m then 1 else t:= b(abs(n-i^2), i-1); if t>1 then return 2 fi; t:= t+b(n+i^2, i-1); `if`(t>1, 2, t) fi end: a:= proc(n) option remember; local m, k; for m from 1+ `if`(n=1, -1, a(n-1)) do for k while b(m, k)=0 do od; if b(m, k)=1 then return m fi od end: seq(a(n), n=1..80);
-
Mathematica
b[n_, i_] := b[n, i] = Module[{m, t}, m = (1 + (3 + 2*i)*i)*i/6; If[n > m, 0, If[n == m, 1, t = b[Abs[n - i^2], i - 1]; If[t > 1, Return[2]]; t = t + b[n + i^2, i - 1]; If[t > 1, 2, t]]]]; a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n - 1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k] == 1, Return[m]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)
Comments