cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231272 Numbers m with unique solution to m = +-1^2+-2^2+-3^2+-4^2+-...+-k^2 with minimal k giving at least one solution.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 35, 36, 37, 38, 44, 45, 47, 49, 51, 53, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 76, 78, 81, 83, 86, 89, 91, 92, 94, 98, 100, 102, 106, 108, 109, 112
Offset: 1

Views

Author

Alois P. Heinz, Nov 06 2013

Keywords

Comments

Numbers m such that A231071(m) = 1. The value of k is given by A231015(m).

Examples

			10 is member of the sequence with unique minimal solution 10 = -1+4-9+16.
A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is a member for k > 0. - _Jonathan Sondow_, Nov 06 2013
		

Crossrefs

Cf. A000330, A231015, A231071, A231016 (complement).

Programs

  • Maple
    b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6;
          if n>m then 0 elif n=m then 1 else
             t:= b(abs(n-i^2), i-1);
             if t>1 then return 2 fi;
             t:= t+b(n+i^2, i-1); `if`(t>1, 2, t)
          fi
        end:
    a:= proc(n) option remember; local m, k;
          for m from 1+ `if`(n=1, -1, a(n-1)) do
            for k while b(m, k)=0 do od;
            if b(m, k)=1 then return m fi
          od
        end:
    seq(a(n), n=1..80);
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m, t}, m = (1 + (3 + 2*i)*i)*i/6; If[n > m,  0, If[n == m, 1, t = b[Abs[n - i^2], i - 1]; If[t > 1, Return[2]]; t = t + b[n + i^2, i - 1]; If[t > 1, 2, t]]]];
    a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n - 1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k] == 1, Return[m]]]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)