A231275 Integer areas of the outer vecten triangles of integer-sided triangles.
49, 91, 105, 196, 289, 301, 364, 379, 420, 441, 459, 505, 529, 609, 631, 697, 751, 784, 799, 819, 889, 897, 945, 961, 991, 1009, 1156, 1171, 1204, 1219, 1225, 1351, 1395, 1401, 1456, 1516, 1521, 1611, 1680, 1681, 1689, 1759, 1764, 1836, 1849, 1939, 2020, 2095
Offset: 1
Keywords
Examples
49 is in the sequence. We use two ways: First way: with the triangle (6, 8, 10) the formula A' = A + (a^2 + b^2 + c^2)/8 gives directly the result: A' = 24 + (6^2 + 8^2 + 10^2)/8 = 24 + 25 = 49 where the area A = 24 is obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(12*(12-6)*(12-8)*(12-10)) = sqrt(576) = 24, where s is the semiperimeter. Second way: by calculation of the sides a', b', c' and by use of Heron's formula. a' = sqrt((b^2 + c^2 + 4*A)/2) = sqrt((8^2 + 10^2 + 4*24)/2) = sqrt(130); b' = sqrt((a^2 + c^2 + 4*A)/2) = sqrt((6^2 + 10^2 + 4*24)/2) = 2*sqrt(29); c' = sqrt((a^2 + b^2 + 4*A)/2) = sqrt((6^2 + 8^2 + 4*24)/2) = 7*sqrt(2). Now we use Heron's formula with (a',b',c'). We find A'=sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with: s1 = (a'+b'+c')/2 = (sqrt(130) + 2*sqrt(29) + 7*sqrt(2))/2; We find A'= 49.
References
- H. S. M. Coxeter and S. L. Greitzer, Points and Lines Connected with a Triangle, Ch. 1 in Geometry Revisited, Washington, DC, Math. Assoc. Amer., pp. 1-26 and 96-97, 1967.
Links
- Eric Weisstein's World of Mathematics, Outer Vecten Triangle
Programs
-
Mathematica
nn=500; lst={}; Do[s =(a + b + c)/2; If[IntegerQ[s], area2 = s (s-a)(s-b) (s-c); If[area2 > 0 && IntegerQ[Sqrt[area2] + (a^2 + b^2 + c^2)/8], AppendTo[lst, Sqrt[area2] + (a^2 + b^2 + c^2)/8]]], {a,nn}, {b,a}, {c,b}]; Union[lst]
Comments