cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231305 Recurrence a(n) = a(n-2) + n^M for M=6, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 64, 730, 4160, 16355, 50816, 134004, 312960, 665445, 1312960, 2437006, 4298944, 7263815, 11828480, 18654440, 28605696, 42792009, 62617920, 89837890, 126617920, 175604011, 239997824, 323639900, 431100800, 567780525, 740016576, 955201014, 1221906880
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^6 + 3^6 + 1^6 = 16355.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Maple
    map(op,ListTools:-PartialSums([seq([(2*i)^6,(2*i+1)^6],i=0..50)])); # Robert Israel, Dec 22 2015
  • Mathematica
    Table[SeriesCoefficient[x (1 + 56 x + 246 x^2 + 56 x^3 + x^4)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,64,730,4160,16355,50816,134004},30] (* Harvey P. Dale, Aug 23 2025 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^6); print(a);
    
  • PARI
    concat(0, Vec(x*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^8 + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)}(n-2k)^6.
From Colin Barker, Dec 22 2015: (Start)
a(n) = 1/42*n*(3*n^6+21*n^5+42*n^4-56*n^2+32).
G.f.: x*(1+56*x+246*x^2+56*x^3+x^4) / (1-x)^8.
(End)