A231328 Integer areas of the reflection triangles of integer-sided triangles.
18, 72, 90, 162, 180, 252, 288, 360, 450, 540, 630, 648, 720, 810, 882, 990, 1008, 1152, 1440, 1458, 1512, 1620, 1638, 1800, 1890, 2160, 2178, 2250, 2268, 2520, 2592, 2772, 2880, 2970, 3042, 3240, 3528, 3672, 3960, 4032, 4050, 4158, 4410, 4500, 4608, 4680, 4860
Offset: 1
Keywords
Examples
18 is in the sequence. We use two ways: First way: with the triangle (3, 4, 5) the formula A' = A*t/(a^2*b^2*c^2) gives directly the result: A'= 18 where the area A = 6 is obtained by Heron's formula A =sqrt(s*(s-a)*(s-b)*(s-c))= sqrt(6*(6-3)*(6-4)*(6-5)) = 6, where s is the semiperimeter. Second way: by calculation of the sides a', b', c' and by using Heron's formula. We obtain from the formulas given in the link: a' = 9*sqrt(17)/5; b' = 4*sqrt(97/5); c' = 5. Now, we use Heron's formula with (a',b',c'). We find A'=sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with: s1 =(a'+b'+c')/2 = (9*sqrt(17)/5+ 4*sqrt(97/5)+ 5)/2. We find A'= 18.
References
- D. Grinberg, On the Kosnita Point and the Reflection Triangle, Forum Geom. 3, 105-111, 2003.
Links
- Eric W. Weisstein, MathWorld: Reflection Triangle
Programs
-
Mathematica
nn = 300 ; lst = {}; Do[s = (a + b + c)/2 ; If[IntegerQ[s],area2 = s (s-a)(s-b) (s-c); If[area2 > 0 && IntegerQ[Sqrt[area2] + (a^2 + b^2 + c^2)/8], AppendTo[lst, Sqrt[area2] + (a^2 + b^2 + c^2)/8]]],{a,nn},{b,a},{c,b}] ; Union[lst]
Comments