cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231373 G.f. A(x) satisfies: A(x-x^2-x^3) = 1/sqrt(1-2*x-3*x^2), which is the g.f. the central trinomial coefficients (A002426).

Original entry on oeis.org

1, 1, 4, 16, 71, 327, 1550, 7490, 36720, 182028, 910330, 4585318, 23233722, 118315318, 605088690, 3105994302, 15994906965, 82602799485, 427662046960, 2219130114108, 11538302709769, 60102637378353, 313591732265662, 1638671208390738, 8574718477933404, 44926247350136232
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 71*x^4 + 327*x^5 + 1550*x^6 +...
where A(x-x^2-x^3)^2 = 1/(1-2*x-3*x^2):
A(x-x^2-x^3) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 + 393*x^7 + 1107*x^8 +...+ A002426(n)*x^n +...
The square of the g.f. begins (cf. A038112):
A(x)^2 = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 +...
such that A(x)^2 = d/dx x*G(x) where G(x) is the g.f. of A001002:
G(x) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
and satisfies G(x-x^2-x^3) = 1/(1-x-x^2).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[D[InverseSeries[Series[x - x^2 - x^3, {x, 0, 30}], x], x]], {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 31 2014 *)
  • PARI
    {a(n)=local(G=serreverse(x-x^2-x^3+x^2*O(x^n)),A);A=sqrt(deriv(G));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F
    {a(n)=local(A2=x); A2=1+sum(m=1, n+1, Dx(m, x^(2*m)*(1+x +x*O(x^n))^m/m!)); polcoeff(sqrt(A2), n)}
    for(n=0,30,print1(a(n),", "))

Formula

Self-convolution yields A038112.
G.f. A(x) satisfies:
(1) A(x) = sqrt( Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n! ).
(2) A(x) = sqrt((1+x)*(5-27*x)*A(x)^6 - 1)/2, from a formula by Mark van Hoeij in A038112.
(3) A(x) = sqrt( d/dx x*G(x) ) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
(4) A(x) = 1/sqrt(1 - 2*x*G(x) - 3*x^2*G(x)^2) where G(x) = Series_Reversion(x-x^2-x^3)/x is the g.f. of A001002.
Sum_{k=0..n} a(k)*a(n-k) = Sum_{k=0..n} C(n+k, k)*C(k, n-k), from a formula by Paul Barry in A038112.
Recurrence: 25*(n-2)*(n-1)*n*a(n) = 110*(n-2)*(n-1)*(2*n-3)*a(n-1) - (n-2)*(214*n^2 - 856*n + 717)*a(n-2) - 33*(2*n-5)*(18*n^2 - 90*n + 113)*a(n-3) - 81*(n-3)*(3*n-11)*(3*n-7)*a(n-4). - Vaclav Kotesovec, Nov 10 2013
a(n) ~ 3^(3/4) * GAMMA(3/4) * (27/5)^n / (2*10^(1/4)*Pi*n^(3/4)). - Vaclav Kotesovec, Dec 29 2013