A231384 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of some of the consecutive step patterns UUD, UDU, DUU (U=up, D=down); triangle T(n,k), n>=0, 0<=k<=max(0,n-3), read by rows.
1, 1, 2, 6, 13, 11, 39, 52, 29, 158, 233, 230, 99, 674, 1344, 1537, 1118, 367, 3304, 8197, 11208, 10200, 5868, 1543, 19511, 49846, 89657, 95624, 67223, 33118, 7901, 122706, 351946, 724755, 907078, 781827, 492285, 206444, 41759, 834131, 2799536, 6010150
Offset: 0
Examples
T(4,1) = 11: 1243, 1342, 2341 (UUD), 1324, 1423, 2314, 2413, 3412 (UDU), 2134, 3124, 4123 (DUU). T(5,0) = 39: 12345, 14325, 15324, ..., 54231, 54312, 54321. T(5,1) = 52: 12354, 12453, 12543, ..., 53124, 53412, 54123. T(5,2) = 29: 12435, 12534, 13245, ..., 51243, 51342, 52341. Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 6; : 4 : 13, 11; : 5 : 39, 52, 29; : 6 : 158, 233, 230, 99; : 7 : 674, 1344, 1537, 1118, 367; : 8 : 3304, 8197, 11208, 10200, 5868, 1543; : 9 : 19511, 49846, 89657, 95624, 67223, 33118, 7901;
Links
- Alois P. Heinz, Rows n = 0..80, flattened
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( add(b(u+j-1, o-j, [2, 3, 3, 6, 6, 3][t])* `if`(t in [5, 6], x, 1), j=1..o)+ add(b(u-j, o+j-1, [4, 5, 5, 4, 4, 5][t])* `if`(t=3, x, 1), j=1..u))) end: T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, x, i), i=0..degree(p))) (add(b(j-1, n-j, 1), j=1..n))): seq(T(n), n=0..12);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u+j-1, o-j, {2, 3, 3, 6, 6, 3}[[t]]]*If[t == 5 || t == 6, x, 1], {j, 1, o}] + Sum[b[u-j, o+j-1, {4, 5, 5, 4, 4, 5}[[t]]]*If[t == 3, x, 1], {j, 1, u}]]]; T[n_] := If[n == 0, 1, Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][Sum[b[j-1, n-j, 1], {j, 1, n}]]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)