A231396 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order.
3, 7, 4, 14, 8, 7, 33, 38, 15, 12, 78, 90, 100, 20, 23, 189, 363, 311, 272, 31, 44, 482, 1163, 1706, 1096, 740, 52, 87, 1225, 3985, 7844, 8340, 4085, 2061, 95, 172, 3238, 14650, 35696, 55788, 41237, 15732, 5834, 180, 343, 8565, 50088, 184692, 345022, 401240
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0..0....0..0..1..1..1....0..0..1..1..1....0..1..1..1..1 ..1..1..0..0..0....1..1..0..0..0....0..1..0..1..1....1..0..0..0..0 ..1..1..1..0..0....1..1..1..0..0....1..0..1..0..0....1..1..0..0..0 ..1..1..0..0..0....1..1..0..0..0....1..1..0..0..0....1..1..1..2..2 ..1..1..1..0..0....0..0..0..0..0....1..1..1..1..1....1..1..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..111
Crossrefs
Column 1 is A023105(n+2)
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) for n>5
k=3: [order 18]
k=4: [order 28] for n>31
Empirical for row n:
n=1: a(n) = 4*a(n-1) +a(n-2) -16*a(n-3) +4*a(n-4) +24*a(n-5) -16*a(n-6)
n=2: [order 21]
n=3: [order 83]
Comments