A231404 Integers n dividing the Lucas sequence u(n), where u(i) = 2*u(i-1) - 4*u(i-2) with initial conditions u(0)=0, u(1)=1.
1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 21, 24, 27, 30, 32, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 64, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 128, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165
Offset: 1
Keywords
Examples
For n=0,...,4 we have u(n)= 0,1,2,0,-8. Clearly n=1,2,3,4 are in the sequence.
Links
- C. Smyth, The terms in Lucas sequences divisible by their indices, Journal of Integer Sequences, Vol.13 (2010), Article 10.2.4.
Crossrefs
Programs
-
Mathematica
nn = 500; s = LinearRecurrence[{2, -4}, {1, 2}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 08 2013 *)
Comments