A231409 Least k with 1^(k*m) + 2^(k*m) + ... + (k*m)^(k*m) == k (mod k*m) for m in A230311.
1, 1, 1, 1, 1, 5, 5, 39607528021345872635
Offset: 1
Examples
1^m + 2^m + ... + m^m == 1 (mod m) for the first 5 terms m = 1, 2, 6, 42, 1806 of A230311, so a(n) = 1 for n <= 5.
Links
- J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv:1309.7941 [math.NT].
Comments