cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231473 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 5 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 4, 4, 1, 6, 9, 1, 6, 18, 1, 8, 28, 10, 1, 8, 42, 28, 1, 10, 57, 76, 1, 10, 76, 140, 25, 1, 12, 96, 254, 107, 1, 12, 120, 392, 321, 1, 14, 145, 600, 731, 70, 1, 14, 174, 840, 1462, 366, 1, 16, 204, 1170, 2610, 1308, 1, 16, 238, 1540, 4350, 3416, 196
Offset: 3

Views

Author

Keywords

Examples

			The first 11 rows of T(n,k) are:
.\ k    0      1      2      3      4
n
3       1      2
4       1      2
5       1      4
6       1      4      4
7       1      6      9
8       1      6     18
9       1      8     28     10
10      1      8     42     28
11      1     10     57     76
12      1     10     76    140     25
13      1     12     96    254    107
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := ((3^k + 1)*Binomial[n - 2k, k] + Boole[EvenQ[k] || OddQ[n]]*(3^(Quotient[(k + 1), 2]) + 3^Quotient[k, 2]) Binomial[(n - 2k - Mod[n, 2])/2, Quotient[k, 2]])/4; Table[T[n, k], {n, 3, 20}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
  • PARI
    T(n,k)={((3^k+1)*binomial(n-2*k,k) + (k%2==0||n%2==1) * (3^((k+1)\2)+3^(k\2)) * binomial((n-2*k-(n%2))/2,k\2))/4}
    for(n=3,20,for(k=0,floor(n/3), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 26 2015
Terms a(40) and beyond from Andrew Howroyd, May 29 2017