A231557 Least positive integer k <= n such that 2^k + (n - k) is prime, or 0 if such an integer k does not exist.
1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 6, 3, 2, 1, 2, 1, 4, 5, 2, 1, 8, 3, 4, 3, 2, 1, 2, 1, 4, 3, 8, 5, 2, 1, 10, 3, 2, 1, 2, 1, 6, 5, 2, 1, 4, 3, 4, 11, 2, 1, 20, 3, 4, 3, 2, 1, 2, 1, 4, 3, 8, 13, 2, 1, 4, 3, 2, 1, 2, 1, 6, 3, 12, 5, 2, 1, 6, 5, 2, 1, 8, 3, 4, 5, 2, 1, 4, 7, 4, 3, 6, 11, 2, 1, 4, 3, 2, 1
Offset: 1
Keywords
Examples
a(1) = 1 since 2^1 + (1-1) = 2 is prime. a(2) = 1 since 2^1 + (2-1) = 3 is prime. a(3) = 2 since 2^1 + (3-1) = 4 is not prime, but 2^2 + (3-2) = 5 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Write n = k + m with 2^k + m prime, a message to Number Theory List, Nov. 16, 2013.
- Zhi-Wei Sun, On a^n+bn modulo m, arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
Do[Do[If[PrimeQ[2^x+n-x],Print[n," ",x];Goto[aa]],{x,1,n}]; Print[n," ",0];Label[aa];Continue,{n,1,100}]
-
PARI
a(n) = {for (k = 1, n, if (isprime(2^k+n-k), return (k));); return (0);} \\ Michel Marcus, Nov 11 2013
Comments