A231588 Primes with decimal digits in arithmetic progression mod 10.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 109, 173, 197, 307, 383, 593, 727, 739, 937, 2963, 4567, 4703, 5791, 7159, 8147, 9371, 10987, 15937, 19753, 37159, 52963, 53197, 58147, 71593, 72727, 73951, 76543
Offset: 1
Examples
(7,2,7,2,7,...) is an arithmetic progression mod 10, hence the prime number 72727 appears in this sequence. (7,6,5,4,3,...) is an arithmetic progression mod 10, hence the prime number 76543 appears in this sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..215 (terms 1..147 from Paul Tek)
- Paul Tek, PARI program for this sequence
Crossrefs
Cf. A167847.
Programs
-
Mathematica
Select[Prime[Range[PrimePi[76543]]], Length[Union[Mod[Differences[IntegerDigits[#]], 10]]] <= 1 &]
-
PARI
See Link section.
-
Python
from sympy import isprime from itertools import count, islice def bgen(): yield from [2, 3, 5, 7] yield from (int("".join(str((s0+i*r)%10) for i in range(d))) for d in count(2) for s0 in range(1, 10) for r in range(-s0, 10-s0)) def agen(): yield from filter(isprime, bgen()) print(list(islice(agen(), 52))) # Michael S. Branicky, Aug 05 2022
Comments