A231631 Least positive integer k < n with k!*(n-k) + 1 prime, or 0 if such an integer k does not exist.
0, 1, 1, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 1, 2, 3, 2, 1, 3, 2, 3, 6, 2, 1, 3, 1, 2, 3, 6, 2, 3, 1, 2, 6, 3, 1, 5, 1, 6, 5, 2, 1, 3, 3, 2, 4, 2, 1, 3, 2, 2, 6, 2, 1, 11, 1, 5, 5, 3, 2, 3, 1, 5, 3, 2, 1, 6, 1, 7, 3, 2, 2, 4, 1, 2, 6, 4, 1, 3, 2, 3, 4, 2, 1, 3, 2, 2, 3, 3, 6, 7, 1, 2, 3, 2
Offset: 1
Keywords
Examples
a(4) = 2 since 1!*3 + 1 = 4 is not prime, but 2!*2 + 1 = 5 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[Do[If[PrimeQ[x!*(n-x)+1],Print[n," ",x];Goto[aa]],{x,1,n-1}]; Print[n," ",0];Label[aa];Continue,{n,1,100}] lpik[n_]:=Module[{k=1},While[!PrimeQ[k!(n-k)+1],k++];k]; Join[{0},Array[ lpik,100,2]] (* Harvey P. Dale, Apr 19 2019 *)
Comments