A231687 a(n) = Sum_{i=0..n} digsum_9(i)^4, where digsum_9(i) = A053830(i).
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 8773, 8789, 8870, 9126, 9751, 11047, 13448, 17544, 24105, 24121, 24202, 24458, 25083, 26379, 28780, 32876, 39437, 49437, 49518, 49774, 50399, 51695, 54096, 58192, 64753, 74753, 89394, 89650, 90275, 91571, 93972, 98068, 104629, 114629, 129270, 150006, 150631, 151927, 154328, 158424, 164985, 174985, 189626, 210362, 238923
Offset: 0
Links
- Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
- P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
- J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
- J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
- J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
Programs
-
PARI
a(n) = sum(i=0, n, sumdigits(i, 9)^4); \\ Michel Marcus, Sep 20 2017