A231739 Integer areas of the Lucas Central triangles of integer-sided triangles.
2775, 11100, 24975, 34125, 44400, 69375, 99900, 135975, 136500, 177600, 224775, 277500, 307125, 335775, 399600, 468975, 543900, 546000, 624375, 710400, 801975, 853125, 899100, 1001775, 1110000, 1223775, 1228500, 1343100, 1467975, 1598400, 1672125, 1734375
Offset: 1
Keywords
Examples
2775 is in the sequence. We use two ways: First way: from the initial triangle (111, 148, 185) the formula in the comments gives directly the area of the Lucas central triangle: S' = a*b*c*R^2*sqrt(u)/v where: R = a*b*c/4S = a*b*c/(4*sqrt(s(s-a)(s-b)(s-c))) = 111*148*185/(4*sqrt(222(222-111)(222-148)(222-185))) = 111*148*185/(4*8214) = 185/2 with S=8214. sqrt(u) = sqrt(3*a^2*b^2*c^2+4*a*b*c*(a^2+b^2+c^2)*R+4*(a^2*b^2+a^2*c^2+b^2*c^2)*R^2) = sqrt(154007727700225) = 12409985. v = (b*c+2*a*R)*(a*c+2*b*R)*(a*b+2*c*R) = 116291549487925 And S' = 111*148*185*(185/2)^2*12409985/116291549487925 = 2775. Second way: by calculation of the sides a', b', c' and by using Heron's formula. With the formulas given in the link, we find a' = 975/14; b' = 580/7; c' = 185/2. Now, we use Heron's formula with (a', b', c'). We find A' = sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with: s1 =(a'+b'+c')/2 = (975/14 + 580/7 + 185/2)/2 = 245/2; We find S'= 2775.
Links
- Peter J. C. Moses, Circles and Triangle Centers Associated with the Lucas Circles, Forum Geom. 5, 97-106, 2005.
- Wolfram MathWorld, Lucas Central Triangle
- Wolfram MathWorld, Lucas Circles
- P. Yiu and A. P. Hatzipolakis, The Lucas Circles of a Triangle, Amer. Math. Monthly 108, 444-446, 2001.
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn=2000;lst={};Do[s =(a + b + c)/2;area2=s (s-a)(s-b)(s-c);If[area2>0,R = a*b*c /(4*Sqrt[area2]);u = a*b*c*R^2 * Sqrt[3*a^2*b^2*c^2 + 4*a*b*c*(a^2 + b^2 + c^2)*R + 4*(a^2*b^2 + a^2*c^2 + b^2*c^2)*R^2];v = (b*c + 2*a*R)*(a*c + 2*b*R)*(a*b + 2*c*R);If[IntegerQ[u/v], AppendTo[lst, u/v]]],{a,nn},{b,a},{c,b}];Union[lst]
Comments