A231740 Integer areas of the intangents triangle of integer-sided triangles.
672, 2688, 6048, 10752, 15435, 16800, 19250, 24192, 32928, 37730, 43008, 54432, 56133, 61740, 67200, 77000, 81312, 96768, 113568, 131712, 138915, 150920, 151200, 172032, 173250, 194208, 217728, 221130, 224532, 242592, 246960, 268800, 296352, 308000, 325248, 339570
Offset: 1
Keywords
Examples
19250 is in the sequence from the initial triangle (102, 182, 200); we use the formula S' = S*(a+b-c)^2*(a-b+c)^2*(-a+b+c)^2 /((-a^2+b^2+c^2)*(a^2+b^2-c^2)*(a^2-b^2+c^2)) = 9240*(102+182-200)^2*(102-182+200)^2*(-102+182+200)^2 /((-102^2+182^2+200^2)*(102^2+182^2-200^2)*(102^2-182^2+200^2)) = 19250 where the area S = 9240 is obtained by Heron's formula S = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(242*(242-102)*(242-182)*(242-200)) = 9240 with the semiperimeter s = (a+b+c)/2 = (102+182+200)/2 = 242.
References
- Clark Kimberling, Triangle centers and central triangles, Congressus Numerantium, 129 (1998)1-285.
Links
- Clark Kimberling, Central points and central lines in the plane of a triangle, Math. Magazine, 67(1994) 163-187.
- Eric Weisstein's World of Mathematics, Intangents Triangle.
- Eric Weisstein's World of Mathematics, Intangents Circle.
- Eric Weisstein's World of Mathematics, Intangent.
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nn = 1000; lst = {}; Do[s = (a + b + c)/2; n = (a + b - c)^2 *(a -b + c)^2 *(-a + b + c)^2;d =(-a^2 + b^2 + c^2) *(a^2 + b^2 - c^2) *(a^2 - b^2 + c^2); If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[area2>0 && d>0 &&IntegerQ[Sqrt[area2] * n/d], AppendTo[lst, Sqrt[area2] * n/d]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments