cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A231808 Numerator of asymptotic density of Union{H_p: p is odd prime and p <= n-th prime}, where H_p is {K*p*(p-1)/2 : K integer}.

Original entry on oeis.org

0, 1, 2, 2, 67, 67, 230, 230, 5317, 70307, 70307, 70307, 70307, 70307, 23158993, 58560723101, 10373287618037, 10373287618037, 10373287618037, 736719736564627, 736719736564627, 736719736564627, 119433196256360189, 1970856524120023, 1970856524120023, 1970856524120023
Offset: 1

Views

Author

Keywords

Comments

a(n)/A231809(n) is the asymptotic density of Union{H_p: p is odd prime and p <= n-th prime}, where H_p is {K*p*(p-1)/2 : K integer}; a(n) tends to 0.41.. (the asymptotic density of A229307 = Union{H_p: p odd prime}).

Examples

			0, 1/3, 2/5, 2/5, 67/165, 67/165, 230/561, 230/561, 5317/12903, 70307/170085, 70307/170085, 70307/170085, 70307/170085, 70307/170085, 23158993/55957965, 58560723101/141368472245, 10373287618037/25022219587365, ....
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica` (*ver 5.0*)
    << Combinatorica` (*ver 8.0*)
    fa[n_] := FactorInteger[n]; lcm[lis_] := lcm[lis] = {aux = 1; Do[aux = LCM[aux, lis[[i]]], {i, 1, Length@lis}]; aux}[[1]]; inclusexclus[lis_] := inclusexclus[lis] =Sum[(-1)^(1 + Length[lis[[i]]])/lcm[lis[[i]]], {i, 1, Length@lis}]; densidad[lis_] := Sum[inclusexclus[KSubsets[lis, i]], {i, 1, Length[lis]}]; lista[n_] := Table[(Prime[i]^2 - Prime[i])/2, {i, 2, n}]; Table[Numerator@densidad[lista[i]], {i, 1, 15}]
Showing 1-1 of 1 results.