A231812 Number of endofunctions on [n] where all nonempty preimages have the same cardinality.
1, 1, 4, 9, 64, 125, 2826, 5047, 218688, 504009, 32216950, 39916811, 7585223196, 6227020813, 2424646536326, 1813027195995, 1072898135852416, 355687428096017, 616925243565037854, 121645100408832019, 441395941479128984940, 72313131901887676821
Offset: 0
Keywords
Examples
a(2) = 4: (1,1), (1,2), (2,1), (2,2). a(3) = 9: (1,1,1), (1,2,3), (1,3,2), (2,1,3), (2,2,2), (2,3,1), (3,1,2), (3,2,1), (3,3,3). a(4) = 64: (1,1,1,1), (1,1,2,2), (1,1,3,3), ..., (4,4,3,3), (4,4,4,4).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
with(numtheory): with(combinat): C:= binomial: a:= n-> `if`(n=0, 1, add(multinomial(n, n/d$d)*C(n, d), d=divisors(n))): seq(a(n), n=0..25);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := If[n == 0, 1, Sum[multinomial[n, Array[n/d&, d]]*Binomial[n, d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
a(n) = Sum_{d|n} multinomial(n; {n/d}^d)*C(n,d) for n>0, a(0) = 1.
a(n) = n! + n = A005095(n) for prime n.
Comments