A231813 Number of iterations of A046665(n) = (greatest prime divisor of n) - (least prime divisor of n) [with A046665(1) = 0] required to reach zero.
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 4, 1, 2, 3, 2, 3, 2, 1, 2, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2
Offset: 0
Keywords
Examples
A046665(6) = 3 - 2, and A046665(1) = 0, so a(6) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384 (terms 1..1000 from Clark Kimberling)
- Antti Karttunen, Data supplement: n, a(n) computed for n = 0..100000
Programs
-
Mathematica
z = 400; h[n_] := h[n] = FactorInteger[n][[-1, 1]] - FactorInteger[n][[1, 1]]; t[n_] := Drop[FixedPointList[h, n], -2]; Table[t[n], {n, 1, z}]; a = Table[Length[t[n]], {n, 1, z}]
-
PARI
A046665(n) = if(1==n,0, my(f = factor(n), lpf = f[1, 1], gpf = f[#f~, 1]); (gpf-lpf)); A231813(n) = if(0==n,0, 1+A231813(A046665(n))); \\ Antti Karttunen, Jan 03 2019
Formula
a(0) = 0; for n > 0, a(n) = 1 + a(A046665(n)). - Antti Karttunen, Jan 03 2019
Extensions
Name edited, term a(0)=0 prepended and more terms added by Antti Karttunen, Jan 03 2019